bond005's picture
Update README.md
111fa18
|
raw
history blame
2.74 kB
metadata
language: ru
datasets:
  - SberDevices/Golos
metrics:
  - wer
  - cer
tags:
  - audio
  - automatic-speech-recognition
  - speech
  - xlsr-fine-tuning-week
license: apache-2.0
widget:
  - example_title: test sound with Russian speech
    src: >-
      https://huggingface.co/bond005/wav2vec2-large-ru-golos/resolve/main/test_sound_ru.flac
model-index:
  - name: XLSR Wav2Vec2 Russian by Ivan Bondarenko
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Sberdevices Golos (crowd)
          type: SberDevices/Golos
          args: ru
        metrics:
          - name: Test WER
            type: wer
            value: 6.358
          - name: Test CER
            type: cer
            value: 1.711
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Sberdevices Golos (farfield)
          type: SberDevices/Golos
          args: ru
        metrics:
          - name: Test WER
            type: wer
            value: 15.402
          - name: Test CER
            type: cer
            value: 4.315

Wav2Vec2-Large-Ru-Golos

The Wav2Vec2 model is based on facebook/wav2vec2-large-xlsr-53, fine-tuned in Russian using Sberdevices Golos with audio augmentations like as pitch shift, acceleration/deceleration of sound, reverberation etc.

When using this model, make sure that your speech input is sampled at 16kHz.

Usage

To transcribe audio files the model can be used as a standalone acoustic model as follows:

from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
 
# load model and tokenizer
processor = Wav2Vec2Processor.from_pretrained("bond005/wav2vec2-large-ru-golos")
model = Wav2Vec2ForCTC.from_pretrained("bond005/wav2vec2-large-ru-golos")
     
# load test part of Golos dataset and read first soundfile
ds = load_dataset("bond005/sberdevices_golos_10h_crowd", split="test")
 
# tokenize
processed = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest")  # Batch size 1
 
# retrieve logits
logits = model(processed.input_values, attention_mask=processed.attention_mask).logits
 
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
print(transcription)

Citation

If you want to cite this model you can use this:

@misc{bondarenko2022wav2vec2-large-ru-golos,
  title={XLSR Wav2Vec2 Russian by Ivan Bondarenko},
  author={Bondarenko, Ivan},
  publisher={Hugging Face},
  journal={Hugging Face Hub},
  howpublished={\url{https://huggingface.co/bond005/wav2vec2-large-ru-golos}},
  year={2022}
}