finomhangolás folyamatban (steps: 868/1000, ami kb 3 epoch)

magyar nyelvű instrukciókövető modell, lora finomhangolva a szurkemarha korpuszon (több magyar korpusz egyesítése)

használt repo: https://github.com/OpenMOSE/RWKV5-LM-LoRA

inferencehez én ezt használom: https://github.com/RWKV/rwkv.cpp

finomhangolási opciók (gyakorlatilag a default):

{'load_model': 'model/RWKV-5-World-3B-v2-20231113-ctx4096.pth', 'wandb': '', 'proj_dir': 'output', 'random_seed': -1, 'data_file': 'data', 'data_type': 'binidx', 'vocab_size': 65536, 'ctx_len': 4096, 'epoch_steps': 200, 'epoch_count': 1000, 'epoch_begin': 0, 'epoch_save': 2, 'micro_bsz': 1, 'n_layer': 32, 'n_embd': 2560, 'dim_att': 2560, 'dim_ffn': 8960, 'pre_ffn': 0, 'head_qk': 0, 'tiny_att_dim': 0, 'tiny_att_layer': -999, 'lr_init': 0.0001, 'lr_final': 9e-06, 'warmup_steps': 200, 'beta1': 0.9, 'beta2': 0.999, 'adam_eps': 1e-08, 'grad_cp': 1, 'dropout': 0, 'weight_decay': 0, 'weight_decay_final': -1, 'my_pile_version': 1, 'my_pile_stage': 0, 'my_pile_shift': -1, 'my_pile_edecay': 0, 'layerwise_lr': 1, 'ds_bucket_mb': 200, 'my_sample_len': 0, 'my_ffn_shift': 1, 'my_att_shift': 1, 'head_size_a': 64, 'head_size_divisor': 8, 'my_pos_emb': 0, 'load_partial': 0, 'magic_prime': 0, 'my_qa_mask': 0, 'my_random_steps': 0, 'my_testing': 'r2r3r4', 'my_exit': 99999999, 'my_exit_tokens': 0, 'lora': True, 'lora_load': '', 'lora_r': 8, 'lora_alpha': 16.0, 'lora_dropout': 0.01, 'lora_parts': 'att,ffn,time,ln', 'logger': False, 'enable_checkpointing': False, 'default_root_dir': None, 'gradient_clip_val': 1.0, 'gradient_clip_algorithm': None, 'num_nodes': 1, 'num_processes': None, 'devices': '1', 'gpus': None, 'auto_select_gpus': False, 'tpu_cores': None, 'ipus': None, 'enable_progress_bar': True, 'overfit_batches': 0.0, 'track_grad_norm': -1, 'check_val_every_n_epoch': 100000000000000000000, 'fast_dev_run': False, 'accumulate_grad_batches': None, 'max_epochs': -1, 'min_epochs': None, 'max_steps': -1, 'min_steps': None, 'max_time': None, 'limit_train_batches': None, 'limit_val_batches': None, 'limit_test_batches': None, 'limit_predict_batches': None, 'val_check_interval': None, 'log_every_n_steps': 100000000000000000000, 'accelerator': 'gpu', 'strategy': 'deepspeed_stage_2_offload', 'sync_batchnorm': False, 'precision': 'bf16', 'enable_model_summary': True, 'weights_save_path': None, 'num_sanity_val_steps': 0, 'resume_from_checkpoint': None, 'profiler': None, 'benchmark': None, 'deterministic': None, 'reload_dataloaders_every_n_epochs': 0, 'auto_lr_find': False, 'replace_sampler_ddp': False, 'detect_anomaly': False, 'auto_scale_batch_size': False, 'plugins': None, 'amp_backend': 'native', 'amp_level': None, 'move_metrics_to_cpu': False, 'multiple_trainloader_mode': 'max_size_cycle', 'my_timestamp': '2024-03-25-21-56-16', 'betas': (0.9, 0.999), 'real_bsz': 1, 'run_name': '65536 ctx4096 L32 D2560'}

lásd a train_log filet több infoért

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train boapps/szurkemarha-rwkv5-3B