segformer-finetuned-4ss1st3r_s3gs3m_24Jan_all-10k-steps

This model is a fine-tuned version of nvidia/mit-b0 on the blzncz/4ss1st3r_s3gs3m_24Jan_all dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3095
  • Mean Iou: 0.5513
  • Mean Accuracy: 0.7874
  • Overall Accuracy: 0.9260
  • Accuracy Bg: nan
  • Accuracy Fallo cohesivo: 0.9668
  • Accuracy Fallo malla: 0.6808
  • Accuracy Fallo adhesivo: 0.9727
  • Accuracy Fallo burbuja: 0.5291
  • Iou Bg: 0.0
  • Iou Fallo cohesivo: 0.9167
  • Iou Fallo malla: 0.6189
  • Iou Fallo adhesivo: 0.7307
  • Iou Fallo burbuja: 0.4903

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Bg Accuracy Fallo cohesivo Accuracy Fallo malla Accuracy Fallo adhesivo Accuracy Fallo burbuja Iou Bg Iou Fallo cohesivo Iou Fallo malla Iou Fallo adhesivo Iou Fallo burbuja
0.1378 1.0 783 0.2677 0.4895 0.7143 0.9122 nan 0.9724 0.5531 0.9663 0.3654 0.0 0.9038 0.5327 0.6757 0.3351
0.1117 2.0 1566 0.2305 0.5289 0.7978 0.9246 nan 0.9507 0.7727 0.9705 0.4974 0.0 0.9214 0.6808 0.5876 0.4549
0.0881 3.0 2349 0.2041 0.5556 0.7867 0.9354 nan 0.9712 0.7391 0.9389 0.4975 0.0 0.9273 0.6790 0.7323 0.4394
0.0878 4.0 3132 0.1984 0.5584 0.8003 0.9346 nan 0.9556 0.8247 0.9602 0.4606 0.0 0.9261 0.6935 0.7373 0.4352
0.0895 5.0 3915 0.2841 0.5246 0.8086 0.9088 nan 0.9137 0.8834 0.9719 0.4652 0.0 0.8964 0.6309 0.6593 0.4365
0.0773 6.0 4698 0.2547 0.5652 0.7823 0.9336 nan 0.9775 0.6843 0.9384 0.5291 0.0 0.9251 0.6378 0.7820 0.4813
0.0667 7.0 5481 0.2726 0.5609 0.7932 0.9295 nan 0.9741 0.6609 0.9689 0.5689 0.0 0.9203 0.6202 0.7548 0.5093
0.0678 8.0 6264 0.2950 0.5276 0.8002 0.9175 nan 0.9443 0.7561 0.9713 0.5292 0.0 0.9089 0.6570 0.5900 0.4822
0.0653 9.0 7047 0.2712 0.5467 0.7682 0.9288 nan 0.9690 0.6971 0.9641 0.4425 0.0 0.9189 0.6330 0.7588 0.4228
0.0646 10.0 7830 0.2841 0.5499 0.7819 0.9272 nan 0.9681 0.6840 0.9688 0.5068 0.0 0.9178 0.6243 0.7345 0.4728
0.057 11.0 8613 0.3373 0.5257 0.7782 0.9166 nan 0.9593 0.6555 0.9739 0.5242 0.0 0.9075 0.6040 0.6319 0.4848
0.0591 12.0 9396 0.3082 0.5504 0.7900 0.9247 nan 0.9656 0.6776 0.9705 0.5463 0.0 0.9148 0.6172 0.7182 0.5019
0.053 12.77 10000 0.3095 0.5513 0.7874 0.9260 nan 0.9668 0.6808 0.9727 0.5291 0.0 0.9167 0.6189 0.7307 0.4903

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 2.0.1+cpu
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
7
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.