segformer-finetuned-4ss1st3r_s3gs3m-10k-steps

This model is a fine-tuned version of nvidia/mit-b0 on the blzncz/4ss1st3r_s3gs3m dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3966
  • Mean Iou: 0.5967
  • Mean Accuracy: 0.8460
  • Overall Accuracy: 0.9344
  • Accuracy Bg: nan
  • Accuracy Fallo cohesivo: 0.9510
  • Accuracy Fallo malla: 0.8524
  • Accuracy Fallo adhesivo: 0.9362
  • Accuracy Fallo burbuja: 0.6444
  • Iou Bg: 0.0
  • Iou Fallo cohesivo: 0.9239
  • Iou Fallo malla: 0.7125
  • Iou Fallo adhesivo: 0.8335
  • Iou Fallo burbuja: 0.5139

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Bg Accuracy Fallo cohesivo Accuracy Fallo malla Accuracy Fallo adhesivo Accuracy Fallo burbuja Iou Bg Iou Fallo cohesivo Iou Fallo malla Iou Fallo adhesivo Iou Fallo burbuja
0.4796 1.0 133 0.4190 0.4518 0.6689 0.9049 nan 0.9277 0.8091 0.9381 0.0008 0.0 0.8866 0.6536 0.7179 0.0008
0.2665 2.0 266 0.3667 0.5096 0.7283 0.9001 nan 0.9111 0.8964 0.8731 0.2324 0.0 0.8802 0.6013 0.8467 0.2197
0.2158 3.0 399 0.3210 0.5505 0.7807 0.9142 nan 0.9250 0.8685 0.9414 0.3878 0.0 0.8952 0.6239 0.8901 0.3432
0.1737 4.0 532 0.3572 0.5370 0.7851 0.8905 nan 0.8905 0.9102 0.9121 0.4277 0.0 0.8671 0.5637 0.8777 0.3764
0.1602 5.0 665 0.6273 0.4086 0.7632 0.7743 nan 0.7333 0.9343 0.9685 0.4168 0.0 0.7198 0.4460 0.5324 0.3449
0.1707 6.0 798 0.3534 0.5442 0.7953 0.9025 nan 0.9056 0.9031 0.9234 0.4492 0.0 0.8812 0.5985 0.8629 0.3783
0.1376 7.0 931 0.3266 0.5513 0.7634 0.9262 nan 0.9434 0.8621 0.9288 0.3195 0.0 0.9109 0.6623 0.8866 0.2968
0.1346 8.0 1064 0.4976 0.4916 0.7900 0.8396 nan 0.8190 0.9133 0.9713 0.4565 0.0 0.8041 0.4662 0.7906 0.3970
0.1319 9.0 1197 0.3650 0.5652 0.8404 0.9043 nan 0.9053 0.8856 0.9593 0.6113 0.0 0.8829 0.5992 0.8734 0.4706
0.1229 10.0 1330 0.3201 0.5666 0.7963 0.9299 nan 0.9435 0.8764 0.9389 0.4265 0.0 0.9171 0.6896 0.8499 0.3763
0.1142 11.0 1463 0.3824 0.5576 0.8204 0.9020 nan 0.8988 0.9231 0.9456 0.5142 0.0 0.8795 0.6001 0.8711 0.4374
0.0983 12.0 1596 0.3133 0.5812 0.8297 0.9293 nan 0.9354 0.9046 0.9558 0.5229 0.0 0.9136 0.6969 0.8618 0.4335
0.1058 13.0 1729 0.2965 0.5860 0.8250 0.9364 nan 0.9528 0.8496 0.9598 0.5378 0.0 0.9253 0.7162 0.8502 0.4383
0.1052 14.0 1862 0.2839 0.6064 0.8275 0.9460 nan 0.9674 0.8517 0.9290 0.5621 0.0 0.9355 0.7492 0.8930 0.4540
0.0911 15.0 1995 0.3245 0.5853 0.8116 0.9368 nan 0.9565 0.8504 0.9298 0.5099 0.0 0.9243 0.7171 0.8534 0.4318
0.0889 16.0 2128 0.3094 0.5969 0.8225 0.9422 nan 0.9615 0.8559 0.9376 0.5351 0.0 0.9313 0.7353 0.8726 0.4451
0.0827 17.0 2261 0.4776 0.5187 0.8195 0.8547 nan 0.8390 0.9163 0.9440 0.5786 0.0 0.8207 0.4920 0.8216 0.4590
0.0939 18.0 2394 0.3923 0.5364 0.8375 0.8948 nan 0.8950 0.8831 0.9437 0.6282 0.0 0.8746 0.6268 0.7090 0.4717
0.0799 19.0 2527 0.3560 0.5776 0.8252 0.9254 nan 0.9337 0.8933 0.9409 0.5331 0.0 0.9096 0.6846 0.8519 0.4422
0.075 20.0 2660 0.3803 0.5796 0.8338 0.9194 nan 0.9249 0.9078 0.9238 0.5788 0.0 0.9032 0.6459 0.8821 0.4670
0.0844 21.0 2793 0.2885 0.6170 0.8334 0.9507 nan 0.9757 0.8296 0.9390 0.5892 0.0 0.9412 0.7654 0.8933 0.4852
0.0746 22.0 2926 0.3222 0.5831 0.8160 0.9331 nan 0.9481 0.8685 0.9370 0.5105 0.0 0.9193 0.7032 0.8716 0.4215
0.072 23.0 3059 0.3481 0.5878 0.8336 0.9266 nan 0.9357 0.8952 0.9271 0.5764 0.0 0.9123 0.6824 0.8720 0.4725
0.0735 24.0 3192 0.3196 0.5974 0.8403 0.9353 nan 0.9496 0.8666 0.9430 0.6018 0.0 0.9225 0.7165 0.8649 0.4832
0.0674 25.0 3325 0.3407 0.5927 0.8435 0.9282 nan 0.9401 0.8786 0.9246 0.6304 0.0 0.9141 0.6844 0.8696 0.4953
0.0712 26.0 3458 0.3356 0.5906 0.8420 0.9301 nan 0.9405 0.8895 0.9299 0.6080 0.0 0.9160 0.6905 0.8743 0.4722
0.072 27.0 3591 0.3491 0.5833 0.8372 0.9286 nan 0.9415 0.8636 0.9425 0.6012 0.0 0.9161 0.6966 0.8246 0.4790
0.0641 28.0 3724 0.3130 0.6087 0.8422 0.9473 nan 0.9697 0.8357 0.9427 0.6208 0.0 0.9386 0.7613 0.8599 0.4837
0.0597 29.0 3857 0.3828 0.5666 0.8394 0.9107 nan 0.9141 0.8934 0.9411 0.6092 0.0 0.8924 0.6327 0.8343 0.4735
0.0648 30.0 3990 0.3435 0.6001 0.8372 0.9403 nan 0.9569 0.8708 0.9276 0.5935 0.0 0.9292 0.7312 0.8779 0.4623
0.0618 31.0 4123 0.3531 0.5963 0.8521 0.9303 nan 0.9450 0.8621 0.9240 0.6773 0.0 0.9179 0.6842 0.8730 0.5063
0.0556 32.0 4256 0.3307 0.6037 0.8417 0.9401 nan 0.9576 0.8637 0.9271 0.6183 0.0 0.9298 0.7274 0.8637 0.4974
0.0616 33.0 4389 0.3510 0.5911 0.8347 0.9298 nan 0.9424 0.8714 0.9388 0.5863 0.0 0.9158 0.6914 0.8745 0.4740
0.0603 34.0 4522 0.3467 0.6022 0.8544 0.9334 nan 0.9487 0.8610 0.9274 0.6807 0.0 0.9211 0.7029 0.8738 0.5130
0.0587 35.0 4655 0.3574 0.6017 0.8407 0.9379 nan 0.9555 0.8541 0.9346 0.6187 0.0 0.9269 0.7228 0.8627 0.4962
0.0557 36.0 4788 0.3871 0.5720 0.8334 0.9178 nan 0.9317 0.8416 0.9374 0.6228 0.0 0.9051 0.6479 0.8160 0.4911
0.0567 37.0 4921 0.4425 0.5656 0.8282 0.9070 nan 0.9114 0.8922 0.9244 0.5848 0.0 0.8889 0.6100 0.8575 0.4718
0.0537 38.0 5054 0.3512 0.5946 0.8392 0.9317 nan 0.9463 0.8649 0.9314 0.6142 0.0 0.9187 0.6984 0.8637 0.4921
0.0559 39.0 5187 0.3676 0.5931 0.8437 0.9273 nan 0.9381 0.8798 0.9323 0.6247 0.0 0.9129 0.6779 0.8786 0.4959
0.0502 40.0 5320 0.4149 0.5518 0.8381 0.8984 nan 0.9011 0.8773 0.9368 0.6370 0.0 0.8793 0.6069 0.7741 0.4989
0.0559 41.0 5453 0.4042 0.5694 0.8342 0.9130 nan 0.9206 0.8721 0.9400 0.6041 0.0 0.8971 0.6319 0.8286 0.4896
0.0523 42.0 5586 0.3669 0.5903 0.8462 0.9286 nan 0.9414 0.8676 0.9337 0.6421 0.0 0.9162 0.6883 0.8370 0.5102
0.0525 43.0 5719 0.4140 0.5704 0.8531 0.9081 nan 0.9110 0.8867 0.9417 0.6729 0.0 0.8898 0.6220 0.8366 0.5035
0.0508 44.0 5852 0.3965 0.5714 0.8396 0.9141 nan 0.9227 0.8800 0.9147 0.6409 0.0 0.8989 0.6513 0.8007 0.5060
0.0507 45.0 5985 0.3793 0.5817 0.8392 0.9196 nan 0.9272 0.8932 0.9214 0.6148 0.0 0.9042 0.6627 0.8407 0.5011
0.0494 46.0 6118 0.3500 0.6020 0.8426 0.9363 nan 0.9524 0.8619 0.9322 0.6240 0.0 0.9247 0.7142 0.8653 0.5058
0.0462 47.0 6251 0.3524 0.6031 0.8435 0.9388 nan 0.9545 0.8668 0.9364 0.6163 0.0 0.9274 0.7269 0.8703 0.4909
0.0486 48.0 6384 0.3876 0.5902 0.8397 0.9308 nan 0.9479 0.8557 0.9161 0.6392 0.0 0.9203 0.6928 0.8334 0.5046
0.0461 49.0 6517 0.3674 0.5933 0.8409 0.9326 nan 0.9482 0.8622 0.9258 0.6274 0.0 0.9214 0.7053 0.8367 0.5030
0.0497 50.0 6650 0.4018 0.5838 0.8374 0.9246 nan 0.9390 0.8519 0.9341 0.6244 0.0 0.9102 0.6733 0.8361 0.4992
0.0491 51.0 6783 0.4036 0.5824 0.8513 0.9198 nan 0.9272 0.8805 0.9403 0.6573 0.0 0.9037 0.6712 0.8169 0.5203
0.046 52.0 6916 0.3913 0.5820 0.8395 0.9243 nan 0.9347 0.8771 0.9336 0.6126 0.0 0.9105 0.6792 0.8244 0.4960
0.0488 53.0 7049 0.3441 0.6010 0.8504 0.9362 nan 0.9523 0.8521 0.9457 0.6517 0.0 0.9250 0.7225 0.8496 0.5081
0.0458 54.0 7182 0.3784 0.5977 0.8382 0.9378 nan 0.9603 0.8212 0.9375 0.6337 0.0 0.9286 0.7157 0.8387 0.5053
0.0449 55.0 7315 0.3506 0.6068 0.8493 0.9404 nan 0.9579 0.8554 0.9385 0.6456 0.0 0.9300 0.7357 0.8549 0.5132
0.0482 56.0 7448 0.4005 0.5819 0.8414 0.9249 nan 0.9374 0.8642 0.9337 0.6303 0.0 0.9119 0.6831 0.8139 0.5006
0.0434 57.0 7581 0.3749 0.5914 0.8465 0.9294 nan 0.9423 0.8675 0.9339 0.6421 0.0 0.9171 0.6999 0.8265 0.5134
0.0435 58.0 7714 0.4195 0.5722 0.8400 0.9172 nan 0.9274 0.8700 0.9234 0.6392 0.0 0.9025 0.6588 0.7954 0.5044
0.0442 59.0 7847 0.3975 0.5828 0.8407 0.9257 nan 0.9398 0.8563 0.9312 0.6356 0.0 0.9134 0.6866 0.8103 0.5037
0.0442 60.0 7980 0.3845 0.5929 0.8457 0.9315 nan 0.9459 0.8603 0.9363 0.6404 0.0 0.9193 0.7041 0.8308 0.5103
0.0422 61.0 8113 0.3875 0.5963 0.8465 0.9338 nan 0.9489 0.8616 0.9340 0.6413 0.0 0.9226 0.7135 0.8381 0.5072
0.0436 62.0 8246 0.3859 0.6022 0.8497 0.9385 nan 0.9566 0.8477 0.9382 0.6562 0.0 0.9289 0.7300 0.8376 0.5147
0.0429 63.0 8379 0.3857 0.5956 0.8425 0.9357 nan 0.9534 0.8481 0.9357 0.6327 0.0 0.9249 0.7233 0.8283 0.5016
0.0446 64.0 8512 0.3778 0.5976 0.8495 0.9343 nan 0.9492 0.8602 0.9399 0.6489 0.0 0.9232 0.7191 0.8305 0.5153
0.0429 65.0 8645 0.3889 0.5948 0.8478 0.9330 nan 0.9490 0.8548 0.9325 0.6549 0.0 0.9225 0.7075 0.8271 0.5167
0.0454 66.0 8778 0.3915 0.5941 0.8470 0.9329 nan 0.9490 0.8571 0.9271 0.6547 0.0 0.9221 0.7087 0.8278 0.5117
0.0427 67.0 8911 0.3924 0.5967 0.8455 0.9349 nan 0.9518 0.8520 0.9350 0.6433 0.0 0.9247 0.7167 0.8290 0.5133
0.0425 68.0 9044 0.3990 0.5992 0.8491 0.9358 nan 0.9524 0.8545 0.9355 0.6541 0.0 0.9250 0.7187 0.8387 0.5136
0.0429 69.0 9177 0.3911 0.5909 0.8499 0.9303 nan 0.9451 0.8532 0.9394 0.6619 0.0 0.9192 0.7029 0.8178 0.5146
0.0465 70.0 9310 0.3840 0.5977 0.8481 0.9332 nan 0.9473 0.8700 0.9278 0.6473 0.0 0.9215 0.7079 0.8480 0.5110
0.0436 71.0 9443 0.3862 0.5974 0.8456 0.9351 nan 0.9518 0.8534 0.9359 0.6413 0.0 0.9248 0.7162 0.8338 0.5124
0.0435 72.0 9576 0.3926 0.5952 0.8448 0.9328 nan 0.9484 0.8585 0.9318 0.6405 0.0 0.9217 0.7073 0.8386 0.5084
0.0421 73.0 9709 0.3961 0.5984 0.8467 0.9348 nan 0.9513 0.8564 0.9309 0.6482 0.0 0.9243 0.7119 0.8414 0.5143
0.0409 74.0 9842 0.3973 0.5982 0.8494 0.9341 nan 0.9498 0.8596 0.9306 0.6578 0.0 0.9233 0.7094 0.8401 0.5181
0.041 75.0 9975 0.3898 0.5963 0.8476 0.9335 nan 0.9493 0.8561 0.9354 0.6498 0.0 0.9227 0.7108 0.8329 0.5153
0.0436 75.19 10000 0.3966 0.5967 0.8460 0.9344 nan 0.9510 0.8524 0.9362 0.6444 0.0 0.9239 0.7125 0.8335 0.5139

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 2.0.1+cpu
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.