|
--- |
|
license: mit |
|
--- |
|
# SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation |
|
|
|
**SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation** [[Paper](https://arxiv.org/abs/2409.13321)] [[Code](https://github.com/knowlab/SLaVA-CXR)] [[Model](https://huggingface.co/bluesky333/SLaVA-CXR)] <br> |
|
|
|
## Environment |
|
|
|
```Shell |
|
conda create -n slava_cxr python=3.10 -y |
|
conda activate slava_cxr |
|
pip install --upgrade pip # enable PEP 660 support |
|
pip install -e . |
|
``` |
|
|
|
## Train |
|
The training codes is made available. The training datasets are currently not available. |
|
|
|
## Evaluation |
|
Evaluation dataset can be any chest X-ray frontal view image paired with a report. |
|
We used MIMIC-CXR and IU-Xray datasets in our paper for the evaluation. |
|
We have included IU-Xray questions for impression and findings section automation. |
|
Please download IU-Xray dataset [LINK](https://drive.google.com/file/d/1c0BXEuDy8Cmm2jfN0YYGkQxFZd2ZIoLg/view). |
|
|
|
### Findings Generation |
|
```Shell |
|
CUDA_VISIBLE_DEVICES=0 python -m llava_phi.eval.model_vqa_slava_cxr \ |
|
--model-path ./SLaVA-CXR \ |
|
--question-file iuxray_sample_findings.jsonl \ |
|
--image-folder path_to_iuxray_images \ |
|
--answers-file findings_result.jsonl \ |
|
--conv-mode default \ |
|
--max_new_tokens 512 |
|
``` |
|
### Impression Summarization |
|
```Shell |
|
CUDA_VISIBLE_DEVICES=0 python -m llava_phi.eval.model_vqa_slava_cxr \ |
|
--model-path ./SLaVA-CXR \ |
|
--question-file iuxray_sample_impression.jsonl \ |
|
--image-folder path_to_iuxray_images \ |
|
--answers-file impression_result.jsonl \ |
|
--conv-mode default \ |
|
--max_new_tokens 256 |
|
``` |
|
## Citation |
|
```bibtex |
|
|
|
@article{wu2024slava, |
|
title={SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation}, |
|
author={Wu, Jinge and Kim, Yunsoo and Shi, Daqian and Cliffton, David and Liu, Fenglin and Wu, Honghan}, |
|
journal={arXiv preprint arXiv:2409.13321}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
## Acknowledgement |
|
We used the LLaVA-Phi codes to train our model |
|
- [LLaVA-Phi](https://github.com/zhuyiche/llava-phi) |
|
|