Model Card for mAInframer-1
LLM for the COBOL programming language.
Model Details
Model Description
mAInframer is a series of models with different parameter counts: 7b, 13b, 34b.
These models are pretrained on code (CodeLlama base models) and fine-tuned on COBOL code.
Uses
This model can be used for code completion and fill-in-the middle (COBOL).
How to Get Started with the Model
Model loading:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("bloopai/mAInframer-7b", device_map="cuda", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-7b-hf")
Completion:
prompt = ''' IDENTIFICATION DIVISION.
PROGRAM-ID. SUM-OF-CUBES.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 STEP PIC S9(10).
01 CUBE PIC 9(7).
01 CUBE-SUM PIC 9(7) VALUE 0.
LINKAGE SECTION.
01 LINKED-ITEMS.
05 L-MAX-STEP PIC S9(10).
05 RESULT PIC S9(10).
*
* Given an integer number, return the sum of the of all the integers below it.
*
* Example:
*
* sum_of_cubes(3) == 1**3 + 2**3 == 9
* sum_of_cubes(5) == 100
*
* Store the result in the RESULT variable and mark the end of your program with END PROGRAM
'''
inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
outputs = model.generate(inputs, max_new_tokens=250, use_cache=True, do_sample=False, repetition_penalty=1.1)
print(self.tokenizer.decode(outputs[0]))
Result:
IDENTIFICATION DIVISION.
PROGRAM-ID. SUM-OF-CUBES.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 STEP PIC S9(10).
01 CUBE PIC 9(7).
01 CUBE-SUM PIC 9(7) VALUE 0.
LINKAGE SECTION.
01 LINKED-ITEMS.
05 L-MAX-STEP PIC S9(10).
05 RESULT PIC S9(10).
*
* Given an integer number, return the sum of the of all the integers below it.
*
* Example:
*
* sum_of_cubes(3) == 1**3 + 2**3 == 9
* sum_of_cubes(5) == 100
*
* Store the result in the RESULT variable and mark the end of your program with END PROGRAM
PROCEDURE DIVISION USING LINKED-ITEMS.
MOVE L-MAX-STEP TO STEP.
PERFORM VARYING STEP FROM 1 BY 1 UNTIL STEP > L-MAX-STEP
COMPUTE CUBE = STEP ** 3
ADD CUBE TO CUBE-SUM
END-PERFORM.
DISPLAY CUBE-SUM.
MOVE CUBE-SUM TO RESULT.
GOBACK.
END PROGRAM SUM-OF-CUBES.
Infilling
Follow the format: <PRE>prefix<SUF>suffix<MID>
To complete PROCEDURE DIVISION
and infill WORKING STORAGE SECTION.
to solve COBOLEval problems:
prompt = '''<PRE> IDENTIFICATION DIVISION.
PROGRAM-ID. SUM-OF-CUBES.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
DATA DIVISION.<SUF>
LINKAGE SECTION.
01 LINKED-ITEMS.
05 L-MAX-STEP PIC S9(10).
05 RESULT PIC S9(10).
*
* Given an integer number, return the sum of the of all the integers below it.
*
* Example:
*
* sum_of_cubes(3) == 1**3 + 2**3 == 9
* sum_of_cubes(5) == 100
*
* Store the result in the RESULT variable and mark the end of your program with END PROGRAM'''
Result:
<PRE> IDENTIFICATION DIVISION.
PROGRAM-ID. MAX-ELEMENT.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
DATA DIVISION.<SUF>
LINKAGE SECTION.
01 LINKED-ITEMS.
05 L-L OCCURS 100 TIMES INDEXED BY NI PIC S9(10).
05 RESULT PIC S9(10).
* Return maximum element in the list.
* >>> max_element([1, 2, 3])
* 3
* >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
* 123
*
* Store the result in the RESULT variable and mark the end of your program with END PROGRAM
PROCEDURE DIVISION USING LINKED-ITEMS.
MOVE ZERO TO WS-MAX-VALUE.
PERFORM VARYING NI FROM 1 BY 1 UNTIL NI > 100
IF L-L (NI) > WS-MAX-VALUE THEN
MOVE L-L (NI) TO WS-MAX-VALUE
END-IF
END-PERFORM.
DISPLAY 'THE MAXIMUM ELEMENT IS: ' WS-MAX-VALUE.
MOVE WS-MAX-VALUE TO RESULT.
GOBACK.
END PROGRAM MAX-ELEMENT.
<MID>
WORKING-STORAGE SECTION.
01 WS-MAX-VALUE PIC S9(10) VALUE ZERO.
Training Details
Base model: CodeLlama Finetuning type: LoRA
Metrics
COBOLEval is an adaptation of HumanEval where the problems are translated to COBOL.
Model | CobolEval (pass@1) |
---|---|
mAInframer-7b | 6.16 |
mAInframer-13b | 8.90 |
mAInframer-34b | 10.27 |
Citation
Model Card Contact
[More Information Needed]
- Downloads last month
- 54
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.