blanchefort's picture
Initial commit
5f21fb3
|
raw
history blame
1.38 kB
metadata
language:
  - ru
tags:
  - sentiment
  - text-classification

RuBERT for Sentiment Analysis of Medical Reviews

This is a DeepPavlov/rubert-base-cased-conversational model trained on corpus of medical reviews.

Labels

0: NEUTRAL
1: POSITIVE
2: NEGATIVE

How to use


import torch
from transformers import AutoModelForSequenceClassification
from transformers import BertTokenizerFast

tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment-med')
model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment-med', return_dict=True)

@torch.no_grad()
def predict(text):
    inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
    outputs = model(**inputs)
    predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
    predicted = torch.argmax(predicted, dim=1).numpy()
    return predicted

Dataset used for model training

Отзывы о медучреждениях

Датасет содержит пользовательские отзывы о медицинских учреждениях. Датасет собран в мае 2019 года с сайта prodoctorov.ru