checkpoints

This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2593
  • Wer: 0.3195

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.9162 0.1621 100 0.5752 0.4898
0.4731 0.3241 200 0.3338 0.3774
0.4288 0.4862 300 0.3089 0.3573
0.3767 0.6483 400 0.3064 0.3607
0.4865 0.8104 500 0.3002 0.3558
0.3979 0.9724 600 0.2988 0.3565
0.3744 1.1345 700 0.2918 0.3596
0.4063 1.2966 800 0.2944 0.3497
0.3615 1.4587 900 0.2875 0.3543
0.3965 1.6207 1000 0.2790 0.3369
0.3846 1.7828 1100 0.2788 0.3372
0.3838 1.9449 1200 0.2747 0.3297
0.4338 2.1070 1300 0.2698 0.3361
0.2994 2.2690 1400 0.2688 0.3263
0.3604 2.4311 1500 0.2718 0.3259
0.3553 2.5932 1600 0.2687 0.3289
0.3616 2.7553 1700 0.2674 0.3232
0.3265 2.9173 1800 0.2656 0.3119
0.2892 3.0794 1900 0.2644 0.3221
0.2685 3.2415 2000 0.2646 0.3153
0.3268 3.4036 2100 0.2640 0.3183
0.2855 3.5656 2200 0.2620 0.3202
0.3351 3.7277 2300 0.2604 0.3195
0.4487 3.8898 2400 0.2593 0.3195

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.6.0+cu126
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for bishaltwr/checkpoints

Finetuned
(260)
this model