Text Generation
Transformers
Safetensors
mistral
Merge
mergekit
lazymergekit
RJuro/munin-neuralbeagle-7b
timpal0l/BeagleCatMunin
macadeliccc/WestLake-7B-v2-laser-truthy-dpo
bineric/NorskGPT-Mistral-7b
meta-math/MetaMath-Mistral-7B
teknium/OpenHermes-2.5-Mistral-7B
text-generation-inference
Inference Endpoints
WestLake-Munin-Cat-NorskGPT
WestLake-Munin-Cat-NorskGPT is a merge of the following models using LazyMergekit:
- RJuro/munin-neuralbeagle-7b
- timpal0l/BeagleCatMunin
- macadeliccc/WestLake-7B-v2-laser-truthy-dpo
- bineric/NorskGPT-Mistral-7b
- meta-math/MetaMath-Mistral-7B
- teknium/OpenHermes-2.5-Mistral-7B
𧩠Configuration
models:
- model: RJuro/munin-neuralbeagle-7b
parameters:
density: 0.53
weight: 0.2
- model: timpal0l/BeagleCatMunin
parameters:
density: 0.53
weight: 0.2
- model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo
parameters:
density: 0.53
weight: 0.2
- model: bineric/NorskGPT-Mistral-7b
parameters:
density: 0.53
weight: 0.2
- model: meta-math/MetaMath-Mistral-7B
parameters:
density: 0.53
weight: 0.1
- model: teknium/OpenHermes-2.5-Mistral-7B
parameters:
density: 0.53
weight: 0.1
merge_method: dare_ties
base_model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo
parameters:
int8_mask: true
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "birgermoell/WestLake-Munin-Cat-NorskGPT"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.