Visualize in Weights & Biases

mambaformer

This model is a fine-tuned version of OuteAI/Lite-Oute-2-Mamba2Attn-Base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1639
  • Accuracy: 0.9607
  • Precision: 0.9628
  • Recall: 0.9607
  • F1: 0.9613
  • Auroc: 0.9925

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • label_smoothing_factor: 0.03

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auroc
0.8973 0.0988 128 0.6661 0.6897 0.6807 0.6897 0.6850 0.5552
0.5525 0.1976 256 0.4682 0.7898 0.7526 0.7898 0.7413 0.7643
0.4086 0.2965 384 0.3500 0.8523 0.8452 0.8523 0.8472 0.9024
0.3067 0.3953 512 0.2573 0.9107 0.9085 0.9107 0.9091 0.9620
0.2477 0.4941 640 0.2234 0.9309 0.9298 0.9309 0.9288 0.9761
0.2283 0.5929 768 0.2074 0.9404 0.9396 0.9404 0.9398 0.9804
0.2035 0.6918 896 0.1875 0.9529 0.9530 0.9529 0.9530 0.9853
0.1963 0.7906 1024 0.1809 0.9464 0.9458 0.9464 0.9460 0.9867
0.1798 0.8894 1152 0.1638 0.9601 0.9610 0.9601 0.9604 0.9900
0.1749 0.9882 1280 0.1652 0.9583 0.9579 0.9583 0.9581 0.9894

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.4.0+cu124
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
252M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for binh230/mambaformer

Finetuned
(1)
this model