mamba2-370m
This model is a fine-tuned version of state-spaces/mamba2-370m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1239
- Accuracy: 0.9792
- Precision: 0.9795
- Recall: 0.9792
- F1: 0.9793
- Auroc: 0.9969
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- label_smoothing_factor: 0.03
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auroc |
---|---|---|---|---|---|---|---|---|
0.3764 | 0.1930 | 500 | 0.2099 | 0.9392 | 0.9385 | 0.9392 | 0.9375 | 0.9822 |
0.197 | 0.3861 | 1000 | 0.2205 | 0.9315 | 0.9462 | 0.9315 | 0.9344 | 0.9929 |
0.1748 | 0.5791 | 1500 | 0.1453 | 0.9690 | 0.9690 | 0.9690 | 0.9690 | 0.9942 |
0.1601 | 0.7721 | 2000 | 0.1352 | 0.9750 | 0.9756 | 0.9750 | 0.9752 | 0.9954 |
0.1542 | 0.9652 | 2500 | 0.2024 | 0.9428 | 0.9450 | 0.9428 | 0.9400 | 0.9935 |
Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.4.0+cu124
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for binh230/mamba2-370m
Base model
state-spaces/mamba2-370m