gemma2-9b-4bit-qlora
This model is a fine-tuned version of unsloth/gemma-2-9b-it-bnb-4bit on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.4238
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
8.2352 | 0.2036 | 50 | 7.5529 |
5.4001 | 0.4072 | 100 | 5.1485 |
3.9619 | 0.6108 | 150 | 3.8688 |
3.4514 | 0.8144 | 200 | 3.4238 |
Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.20.0
- Downloads last month
- 2
Model tree for binh230/gemma2-9b-4bit-qlora
Base model
google/gemma-2-9b
Finetuned
google/gemma-2-9b-it
Quantized
unsloth/gemma-2-9b-it-bnb-4bit