|
--- |
|
base_model: meta-llama/Llama-3.1-8B-Instruct |
|
library_name: peft |
|
tags: |
|
- llama |
|
- llama-3.1 |
|
- lora |
|
- fine-tuned |
|
- peft |
|
--- |
|
|
|
# Fine-tuned Llama 3.1 8B Instruct Model |
|
|
|
This is a fine-tuned version of Meta's [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) model using LoRA (Low-Rank Adaptation) technique. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
This model is a fine-tuned version of Llama 3.1 8B Instruct using PEFT (Parameter-Efficient Fine-Tuning) with LoRA. The fine-tuning process focused on adapting the base model to specific use cases while maintaining the general capabilities of the original model. |
|
|
|
- **Developed by:** Bhavya Bipin Gada (PRESHENT) |
|
- **Model type:** LoRA fine-tuned Llama 3.1 |
|
- **Language(s):** English |
|
- **License:** MIT |
|
- **Finetuned from model:** meta-llama/Llama-3.1-8B-Instruct |
|
|
|
## Training Details |
|
|
|
### Training Procedure |
|
|
|
The model was fine-tuned using the following LoRA configuration: |
|
|
|
- **LoRA rank (r):** 8 |
|
- **LoRA alpha:** 16 |
|
- **LoRA dropout:** 0.05 |
|
- **Target modules:** k_proj, q_proj, v_proj, o_proj, gate_proj, up_proj, down_proj |
|
- **Task type:** CAUSAL_LM |
|
|
|
### Training Data |
|
|
|
```json |
|
|
|
[ |
|
{ |
|
"messages": [ |
|
{ |
|
"role": "user", |
|
"content": "What sustainable solutions do you offer for solar energy?" |
|
}, |
|
{ |
|
"role": "assistant", |
|
"content": "We offer rooftop solar panels, community solar options, and solar battery storage solutions optimized for your location." |
|
} |
|
] |
|
}, |
|
{ |
|
"messages": [ |
|
{ |
|
"role": "user", |
|
"content": "Can you recommend a sustainable water purification method?" |
|
}, |
|
{ |
|
"role": "assistant", |
|
"content": "Reverse osmosis systems powered by renewable energy are highly effective and sustainable." |
|
} |
|
] |
|
} |
|
] |
|
|
|
``` |
|
|
|
## Usage |
|
|
|
You can use this model with the Transformers library: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel, PeftConfig |
|
|
|
# Load the base model |
|
base_model_id = "meta-llama/Llama-3.1-8B-Instruct" |
|
model = AutoModelForCausalLM.from_pretrained(base_model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(base_model_id) |
|
|
|
# Load the LoRA adapter |
|
adapter_path = "bhavyabgada/preshent-llama" |
|
model = PeftModel.from_pretrained(model, adapter_path) |
|
|
|
# Generate text |
|
input_text = "Your prompt here" |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_length=100) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
## Limitations and Biases |
|
|
|
This model inherits the limitations and biases from the base Llama 3.1 8B Instruct model. |
|
|
|
|
|
## Framework versions |
|
|
|
- PEFT 0.13.2 |