bert-finetuned-char-classification-e15

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1233
  • F1: 0.5572
  • Roc Auc: 0.7345
  • Accuracy: 0.3761

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 512
  • eval_batch_size: 512
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.1881 1.2 500 0.1694 0.0104 0.5024 0.0007
0.1563 2.39 1000 0.1415 0.3037 0.5948 0.1221
0.1374 3.59 1500 0.1290 0.3997 0.6353 0.1958
0.127 4.78 2000 0.1231 0.4467 0.6579 0.2376
0.1194 5.98 2500 0.1188 0.4801 0.6748 0.2665
0.1114 7.18 3000 0.1183 0.5071 0.6944 0.3016
0.1048 8.37 3500 0.1177 0.5202 0.7032 0.3216
0.0983 9.57 4000 0.1172 0.5344 0.7123 0.3371
0.0917 10.77 4500 0.1164 0.5414 0.7175 0.3458
0.0852 11.96 5000 0.1175 0.5495 0.7240 0.3580
0.0787 13.16 5500 0.1226 0.5545 0.7328 0.3742
0.0738 14.35 6000 0.1233 0.5572 0.7345 0.3761

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
114
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bhagasra-saurav/bert-finetuned-char-classification-e15

Finetuned
(2414)
this model