You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

terminus-xl-refiner

This is a full rank finetune derived from segmind/SSD-1B.

The main validation prompt used during training was:

a cute anime character named toast

Validation settings

  • CFG: 7.5
  • CFG Rescale: 0.7
  • Steps: 30
  • Sampler: ddpm
  • Seed: 420420420
  • Resolution: 1024

Note: The validation settings are not necessarily the same as the training settings.

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0
  • Training steps: 12800
  • Learning rate: 2e-06
  • Effective batch size: 16
    • Micro-batch size: 4
    • Gradient accumulation steps: 4
    • Number of GPUs: 1
  • Prediction type: v_prediction
  • Rescaled betas zero SNR: True
  • Optimizer: AdamW, stochastic bf16
  • Precision: Pure BF16
  • Xformers: Enabled

Datasets

pixel-art

  • Repeats: 0
  • Total number of images: 1040
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

signs

  • Repeats: 0
  • Total number of images: 368
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

experimental

  • Repeats: 0
  • Total number of images: 3024
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

ethnic

  • Repeats: 0
  • Total number of images: 3072
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

sports

  • Repeats: 0
  • Total number of images: 784
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

architecture

  • Repeats: 0
  • Total number of images: 4336
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

shutterstock

  • Repeats: 0
  • Total number of images: 21072
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

cinemamix-1mp

  • Repeats: 0
  • Total number of images: 9008
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

nsfw-1024

  • Repeats: 0
  • Total number of images: 10800
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

anatomy

  • Repeats: 5
  • Total number of images: 16417
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

yoga

  • Repeats: 0
  • Total number of images: 3600
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

photo-aesthetics

  • Repeats: 0
  • Total number of images: 33136
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

text-1mp

  • Repeats: 5
  • Total number of images: 13170
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

photo-concept-bucket

  • Repeats: 0
  • Total number of images: 567554
  • Total number of aspect buckets: 3
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: random

Inference

import torch
from diffusers import DiffusionPipeline



model_id = "terminus-xl-refiner"
prompt = "a cute anime character named toast"
negative_prompt = "malformed, disgusting, overexposed, washed-out"

pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt='blurry, cropped, ugly',
    num_inference_steps=30,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1152,
    height=768,
    guidance_scale=7.5,
    guidance_rescale=0.7,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bghira/terminus-xl-refiner

Base model

segmind/SSD-1B
Finetuned
(5)
this model