bghira's picture
Model card auto-generated by SimpleTuner
fd43ec1 verified
metadata
license: other
base_model: black-forest-labs/FLUX.1-dev
tags:
  - flux
  - flux-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - lora
  - template:sd-lora
inference: true
widget:
  - text: unconditional (blank prompt)
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_0_0.png
  - text: >-
      a comic strip of garfield, by jim davis. the first panel has garfield
      saying Help!. the second panel has garfield saying My clungus is leaking!
      and the third panel has Odie saying uh oh!
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_1_0.png
  - text: >-
      a comic strip by jim davis, showcasing odie in his full demonic form while
      garfield cowers in the background
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_2_0.png
  - text: a picture of garfield in walmart, shopping amongst the real people
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_3_0.png
  - text: A photo-realistic image of a cat
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_4_0.png

simpletuner-lora-schedulefree

This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.

The main validation prompt used during training was:

A photo-realistic image of a cat

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1776x512

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
a comic strip of garfield, by jim davis. the first panel has garfield saying Help!. the second panel has garfield saying My clungus is leaking! and the third panel has Odie saying uh oh!
Negative Prompt
blurry, cropped, ugly
Prompt
a comic strip by jim davis, showcasing odie in his full demonic form while garfield cowers in the background
Negative Prompt
blurry, cropped, ugly
Prompt
a picture of garfield in walmart, shopping amongst the real people
Negative Prompt
blurry, cropped, ugly
Prompt
A photo-realistic image of a cat
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 7
  • Training steps: 3000
  • Learning rate: 0.0001
  • Effective batch size: 6
    • Micro-batch size: 2
    • Gradient accumulation steps: 1
    • Number of GPUs: 3
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_schedulefree+aggressiveweight_decay=1e-3
  • Precision: bf16
  • Quantised: Yes: fp8-quanto
  • Xformers: Not used
  • LyCORIS Config:
{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 12,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 12
            },
            "FeedForward": {
                "factor": 6
            }
        }
    }
}

Datasets

garfield

  • Repeats: 0
  • Total number of images: ~2208
  • Total number of aspect buckets: 1
  • Resolution: 512 px
  • Cropped: True
  • Crop style: random
  • Crop aspect: square

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()

prompt = "A photo-realistic image of a cat"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1776,
    height=512,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")