metadata
license: other
base_model: black-forest-labs/FLUX.1-dev
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- lora
- template:sd-lora
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: >-
a comic strip of garfield, by jim davis. the first panel has garfield
saying Help!. the second panel has garfield saying My clungus is leaking!
and the third panel has Odie saying uh oh!
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
- text: >-
a comic strip by jim davis, showcasing odie in his full demonic form while
garfield cowers in the background
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_2_0.png
- text: a picture of garfield in walmart, shopping amongst the real people
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_3_0.png
- text: A photo-realistic image of a cat
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_4_0.png
simpletuner-lora-schedulefree
This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.
The main validation prompt used during training was:
A photo-realistic image of a cat
Validation settings
- CFG:
3.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
None
- Seed:
42
- Resolution:
1776x512
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 3
- Training steps: 1500
- Learning rate: 0.0001
- Effective batch size: 6
- Micro-batch size: 2
- Gradient accumulation steps: 1
- Number of GPUs: 3
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: adamw_schedulefree+aggressiveweight_decay=1e-3
- Precision: bf16
- Quantised: Yes: fp8-quanto
- Xformers: Not used
- LyCORIS Config:
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 12,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 12
},
"FeedForward": {
"factor": 6
}
}
}
}
Datasets
garfield
- Repeats: 0
- Total number of images: ~2208
- Total number of aspect buckets: 1
- Resolution: 512 px
- Cropped: True
- Crop style: random
- Crop aspect: square
Inference
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()
prompt = "A photo-realistic image of a cat"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1776,
height=512,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")