|
--- |
|
license: creativeml-openrail-m |
|
base_model: "stabilityai/stable-diffusion-3-medium-diffusers" |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- diffusers |
|
- lora |
|
- template:sd-lora |
|
inference: true |
|
widget: |
|
- text: 'a studio portrait photograph of emma watson. she looks relaxed and happy.' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_0_0.png |
|
--- |
|
|
|
# sd3-lora-celebrities |
|
|
|
This is a LoRA derived from [stabilityai/stable-diffusion-3-medium-diffusers](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers). |
|
|
|
The main validation prompt used during training was: |
|
|
|
``` |
|
a studio portrait photograph of emma watson. she looks relaxed and happy. |
|
``` |
|
|
|
## Validation settings |
|
- CFG: `5.0` |
|
- CFG Rescale: `0.2` |
|
- Steps: `50` |
|
- Sampler: `euler` |
|
- Seed: `2` |
|
- Resolution: `1280x768` |
|
|
|
Note: The validation settings are not necessarily the same as the [training settings](#training-settings). |
|
|
|
You can find some example images in the following gallery: |
|
|
|
|
|
<Gallery /> |
|
|
|
The text encoder **was not** trained. |
|
You may reuse the base model text encoder for inference. |
|
|
|
|
|
## Training settings |
|
|
|
- Training epochs: 5 |
|
- Training steps: 9316 |
|
- Learning rate: 0.0001 |
|
- Effective batch size: 1 |
|
- Micro-batch size: 1 |
|
- Gradient accumulation steps: 1 |
|
- Number of GPUs: 1 |
|
- Prediction type: v_prediction |
|
- Rescaled betas zero SNR: True |
|
- Optimizer: AdamW, stochastic bf16 |
|
- Precision: Pure BF16 |
|
- Xformers: Not used |
|
- LoRA Rank: 16 |
|
- LoRA Alpha: 16 |
|
- LoRA Dropout: 0.1 |
|
- LoRA initialisation style: default |
|
|
|
|
|
## Datasets |
|
|
|
### celebrities-sd3 |
|
- Repeats: 0 |
|
- Total number of images: 1830 |
|
- Total number of aspect buckets: 27 |
|
- Resolution: 0.5 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
|
|
|
|
## Inference |
|
|
|
|
|
```python |
|
import torch |
|
from diffusers import StableDiffusion3Pipeline |
|
|
|
|
|
|
|
model_id = "sd3-lora-celebrities" |
|
prompt = "a studio portrait photograph of emma watson. she looks relaxed and happy." |
|
negative_prompt = "malformed, disgusting, overexposed, washed-out" |
|
|
|
pipeline = DiffusionPipeline.from_pretrained(model_id) |
|
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') |
|
image = pipeline( |
|
prompt=prompt, |
|
negative_prompt='blurry, cropped, ugly', |
|
num_inference_steps=50, |
|
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), |
|
width=1152, |
|
height=768, |
|
guidance_scale=5.0, |
|
guidance_rescale=0.2, |
|
).images[0] |
|
image.save("output.png", format="PNG") |
|
``` |
|
|
|
|