File size: 1,602 Bytes
8d032b4 eb7f0e7 8d032b4 5f121a8 8d032b4 eb7f0e7 8d032b4 eb7f0e7 8d032b4 eb7f0e7 16e35e5 eb7f0e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
base_model:
- Qwen/Qwen2.5-3B-Instruct
tags:
- text-generation-inference
- transformers
- qwen2
- trl
- sft
license: apache-2.0
language:
- en
- vi
datasets:
- beyoru/Tin_hoc_mcq
---
# Uploaded model
- **Developed by:** beyoru
- **License:** apache-2.0
# Usage
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "beyoru/MCQ-o1-512"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
{"role": "system", "content": "Bạn là một trợ lý thông minh có khả năng tạo ra một câu hỏi trắc nghiệm từ bất kỳ ngữ cảnh"},
{"role": "user", "content": "<YOUR CONTEXT>"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
do_sample=True
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
# Notes:
- For small datasets with narrow content which the model has already done well on our domain, and doesn't want the model to forget the knowledge => Just need to focus on o.
- Fine-tuned lora with rank = 1 and alpha = 512, epoch = 1, linear (optim)
- DoRA
# Improvement
- Increasing rank can help the model do better at robust structure.
- Try more efficient fine-tuning |