Uploaded model

  • Developed by: beyoru
  • License: apache-2.0

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "beyoru/MCQ-o1-512"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [
    {"role": "system", "content": "Bạn là một trợ lý thông minh có khả năng tạo ra một câu hỏi trắc nghiệm từ bất kỳ ngữ cảnh"},
    {"role": "user", "content": "<YOUR CONTEXT>"}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    do_sample=True
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

Notes:

  • For small datasets with narrow content which the model has already done well on our domain, and doesn't want the model to forget the knowledge => Just need to focus on o.
  • Fine-tuned lora with rank = 1 and alpha = 512, epoch = 1, linear (optim)
  • DoRA

Improvement

  • Increasing rank can help the model do better at robust structure.
  • Try more efficient fine-tuning
Downloads last month
130
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for beyoru/MCQ-o1-512

Base model

Qwen/Qwen2.5-3B
Finetuned
(86)
this model

Dataset used to train beyoru/MCQ-o1-512

Collection including beyoru/MCQ-o1-512