JaeHyeong's picture
Update README.md
282ed82
---
language: ko
tags:
- intent-classification
datasets:
- kor_3i4k
license: cc-by-nc-4.0
---
## Finetuning
- Pretrain Model : [klue/roberta-small](https://github.com/KLUE-benchmark/KLUE)
- Dataset for fine-tuning : [3i4k](https://github.com/warnikchow/3i4k)
- Train : 46,863
- Validation : 8,271 (15% of Train)
- Test : 6,121
- Label info
- 0: "fragment",
- 1: "statement",
- 2: "question",
- 3: "command",
- 4: "rhetorical question",
- 5: "rhetorical command",
- 6: "intonation-dependent utterance"
- Parameters of Training
```
{
"epochs": 3 (setting 10 but early stopped),
"batch_size":32,
"optimizer_class": "<keras.optimizer_v2.adam.Adam'>",
"optimizer_params": {
"lr": 5e-05
},
"min_delta": 0.01
}
```
## Usage
``` python
from transformers import RobertaTokenizerFast, RobertaForSequenceClassification, TextClassificationPipeline
# Load fine-tuned model by HuggingFace Model Hub
HUGGINGFACE_MODEL_PATH = "bespin-global/klue-roberta-small-3i4k-intent-classification"
loaded_tokenizer = RobertaTokenizerFast.from_pretrained(HUGGINGFACE_MODEL_PATH )
loaded_model = RobertaForSequenceClassification.from_pretrained(HUGGINGFACE_MODEL_PATH )
# using Pipeline
text_classifier = TextClassificationPipeline(
tokenizer=loaded_tokenizer,
model=loaded_model,
return_all_scores=True
)
# predict
text = "your text"
preds_list = text_classifier(text)
best_pred = preds_list[0]
print(f"Label of Best Intentatioin: {best_pred['label']}")
print(f"Score of Best Intentatioin: {best_pred['score']}")
```
## Evaluation
```
precision recall f1-score support
command 0.89 0.92 0.90 1296
fragment 0.98 0.96 0.97 600
intonation-depedent utterance 0.71 0.69 0.70 327
question 0.95 0.97 0.96 1786
rhetorical command 0.87 0.64 0.74 108
rhetorical question 0.61 0.63 0.62 174
statement 0.91 0.89 0.90 1830
accuracy 0.90 6121
macro avg 0.85 0.81 0.83 6121
weighted avg 0.90 0.90 0.90 6121
```
## Citing & Authors
<!--- Describe where people can find more information -->
[Jaehyeong](https://huggingface.co/jaehyeong) at [Bespin Global](https://www.bespinglobal.com/)