license: other
license_name: yi-license
license_link: LICENSE
extra_gated_heading: Access beomi/Yi-Ko-DUS on Hugging Face
extra_gated_button_content: Submit
extra_gated_fields:
I agree to share my name, email address and username: checkbox
I confirm that I understand this project is for research purposes only, and confirm that I agree to follow the LICENSE of this model: checkbox
language:
- en
- ko
pipeline_tag: text-generation
inference: false
tags:
- pytorch
- Yi-Ko
- 01-ai
- Yi
library_name: transformers
Update @ 2024.01.20 Released Yi-Ko(KoEN)-DUS-9B model 🎉
beomi/Yi-Ko-DUS-9B
Yi-Ko-DUS model serves as DUS-applied and advanced iterations of beomi/Yi-Ko-6B model, benefiting from an expanded vocabulary and the inclusion of Korean/English corpus in its further pretraining.
Yi-Ko-DUS model operates with 9B billion parameters.
This repository focuses on the 9B pretrained version, which is tailored to fit the Hugging Face Transformers format, trained after DUS method applied.
Model Details
Model Developers Junbum Lee (Beomi), Taekyoon Choi (Taekyoon)
Variations Yi-Ko-DUS has 9B model only.
Input Models input text only.
Output Models generate text only.
Model Architecture
Yi-Ko-DUS series models are an auto-regressive language model that uses an optimized transformer architecture based on Llama-2*.
*Yi model architecture is based on Llama2, so it can be loaded via LlamaForCausalLM
class on HF.
Model Name | Training Data | Params | Context Length | GQA | Trained Tokens | LR | Batch Size(per step) |
---|---|---|---|---|---|---|---|
Yi-Ko-DUS-9B | A mix of Korean + English online data | 9B | 4k | O | >1200B | 5e-5 | 2M tokens |
Vocab Expansion
Model Name | Vocabulary Size | Description |
---|---|---|
Original Yi-Series | 64000 | Sentencepiece BPE |
Expanded Yi-Ko(DUS) Series | 78464 | Sentencepiece BPE. Added Korean vocab and merges |
Tokenizing "안녕하세요, 오늘은 날씨가 좋네요.ㅎㅎ"
Model | # of tokens | Tokens |
---|---|---|
Original Yi-Series | 47 | ['<0xEC>', '<0x95>', '<0x88>', '<0xEB>', '<0x85>', '<0x95>', '하', '<0xEC>', '<0x84>', '<0xB8>', '<0xEC>', '<0x9A>', '<0x94>', ',', '▁', '<0xEC>', '<0x98>', '<0xA4>', '<0xEB>', '<0x8A>', '<0x98>', '은', '▁', '<0xEB>', '<0x82>', '<0xA0>', '<0xEC>', '<0x94>', '<0xA8>', '가', '▁', '<0xEC>', '<0xA2>', '<0x8B>', '<0xEB>', '<0x84>', '<0xA4>', '<0xEC>', '<0x9A>', '<0x94>', '.', '<0xE3>', '<0x85>', '<0x8E>', '<0xE3>', '<0x85>', '<0x8E>'] |
Expanded Yi-Ko(DUS) Series | 10 | ['▁안녕', '하세요', ',', '▁오늘은', '▁날', '씨가', '▁좋네요', '.', 'ㅎ', 'ㅎ'] |
*Equal Korean vocab with Llama-2-Ko Series |
Tokenizing "Llama 2: Open Foundation and Fine-Tuned Chat Models"
Model | # of tokens | Tokens |
---|---|---|
Original Yi-Series | 21 | ['The', '▁Y', 'i', '▁series', '▁models', '▁are', '▁large', '▁language', '▁models', '▁trained', '▁from', '▁scratch', '▁by', '▁developers', '▁at', '▁', '0', '1', '.', 'AI', '.'] |
Expanded Yi-Ko(DUS) Series | 21 | ['▁The', '▁Y', 'i', '▁series', '▁models', '▁are', '▁large', '▁language', '▁models', '▁trained', '▁from', '▁scratch', '▁by', '▁developers', '▁at', '▁', '0', '1', '.', 'AI', '.'] |
*Equal Korean vocab with Llama-2-Ko Series | *Since Expanded Yi-Ko Series prepends _ at the beginning of the text(to ensure same tokenization for Korean sentences), it shows negilible difference for the first token on English tokenization. |
Model Benchmark
5-shot Korean Dataset Evaluation
KMMLU: 0.433514 (exact_match, kmmlu_direct)
KorQuAD: 0.808798 (exact_match)
NSMC: 0.88352 (acc)
KOBEST COPA: 0.844831 (macro_f1)
KOBEST HellaSwag: 0.526099 (macro_f1)
Apeach: Korean HateSpeech: 0.634723 (macro_f1)
LICENSE
Yi Series Models Community License Agreement
For commercial purpose, Follow Yi Series Models Community License Agreement to acquire Yi Series commercial license, and mailto: [email protected] to acquire Yi-Ko sereis commercial license.
Citation
Please use this bibtex below:
@misc {lee_junbum_2024,
author = { {Lee Junbum} },
title = { Yi-Ko-DUS-9B (Revision d7692cc) },
year = 2024,
url = { https://huggingface.co/beomi/Yi-Ko-DUS-9B },
doi = { 10.57967/hf/1707 },
publisher = { Hugging Face }
}
Acknowledgement
The training is supported by TPU Research Cloud program.