metadata
library_name: transformers
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: output_LiLT_test_05
results: []
output_LiLT_test_05
This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1210
- Precision: 0.8130
- Recall: 0.8086
- F1: 0.8108
- Accuracy: 0.9647
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.0808 | 100 | 0.6084 | 0.0053 | 0.0014 | 0.0023 | 0.8727 |
No log | 0.1617 | 200 | 0.3137 | 0.2946 | 0.3010 | 0.2977 | 0.9036 |
No log | 0.2425 | 300 | 0.2373 | 0.5717 | 0.6368 | 0.6025 | 0.9289 |
No log | 0.3234 | 400 | 0.1952 | 0.7224 | 0.6518 | 0.6853 | 0.9473 |
0.4203 | 0.4042 | 500 | 0.1695 | 0.7066 | 0.6936 | 0.7000 | 0.9491 |
0.4203 | 0.4850 | 600 | 0.1826 | 0.6140 | 0.7420 | 0.6720 | 0.9371 |
0.4203 | 0.5659 | 700 | 0.1806 | 0.6236 | 0.7818 | 0.6938 | 0.9407 |
0.4203 | 0.6467 | 800 | 0.1706 | 0.6900 | 0.8201 | 0.7495 | 0.9511 |
0.4203 | 0.7276 | 900 | 0.1551 | 0.7852 | 0.7567 | 0.7707 | 0.9588 |
0.1009 | 0.8084 | 1000 | 0.1361 | 0.7655 | 0.7780 | 0.7717 | 0.9622 |
0.1009 | 0.8892 | 1100 | 0.1439 | 0.7876 | 0.7697 | 0.7785 | 0.9601 |
0.1009 | 0.9701 | 1200 | 0.1441 | 0.7775 | 0.7694 | 0.7734 | 0.9612 |
0.1009 | 1.0509 | 1300 | 0.1282 | 0.7813 | 0.8158 | 0.7982 | 0.9643 |
0.1009 | 1.1318 | 1400 | 0.1421 | 0.7794 | 0.8054 | 0.7922 | 0.9621 |
0.0791 | 1.2126 | 1500 | 0.1557 | 0.7163 | 0.7780 | 0.7459 | 0.9528 |
0.0791 | 1.2935 | 1600 | 0.1460 | 0.7489 | 0.7985 | 0.7729 | 0.9589 |
0.0791 | 1.3743 | 1700 | 0.1343 | 0.7846 | 0.8031 | 0.7937 | 0.9621 |
0.0791 | 1.4551 | 1800 | 0.1394 | 0.7944 | 0.7875 | 0.7910 | 0.9611 |
0.0791 | 1.5360 | 1900 | 0.1504 | 0.7803 | 0.8066 | 0.7932 | 0.9631 |
0.0652 | 1.6168 | 2000 | 0.1292 | 0.7615 | 0.8247 | 0.7919 | 0.9599 |
0.0652 | 1.6977 | 2100 | 0.1298 | 0.7993 | 0.8115 | 0.8053 | 0.9644 |
0.0652 | 1.7785 | 2200 | 0.1498 | 0.7394 | 0.8351 | 0.7844 | 0.9577 |
0.0652 | 1.8593 | 2300 | 0.1319 | 0.7800 | 0.8086 | 0.7941 | 0.9618 |
0.0652 | 1.9402 | 2400 | 0.1383 | 0.8145 | 0.7824 | 0.7981 | 0.9648 |
0.0618 | 2.0210 | 2500 | 0.1210 | 0.8130 | 0.8086 | 0.8108 | 0.9647 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1