output_LiLT_test_05 / README.md
benedma2's picture
End of training
72889e4 verified
|
raw
history blame
3.85 kB
metadata
library_name: transformers
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: output_LiLT_test_05
    results: []

output_LiLT_test_05

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1210
  • Precision: 0.8130
  • Recall: 0.8086
  • F1: 0.8108
  • Accuracy: 0.9647

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.0808 100 0.6084 0.0053 0.0014 0.0023 0.8727
No log 0.1617 200 0.3137 0.2946 0.3010 0.2977 0.9036
No log 0.2425 300 0.2373 0.5717 0.6368 0.6025 0.9289
No log 0.3234 400 0.1952 0.7224 0.6518 0.6853 0.9473
0.4203 0.4042 500 0.1695 0.7066 0.6936 0.7000 0.9491
0.4203 0.4850 600 0.1826 0.6140 0.7420 0.6720 0.9371
0.4203 0.5659 700 0.1806 0.6236 0.7818 0.6938 0.9407
0.4203 0.6467 800 0.1706 0.6900 0.8201 0.7495 0.9511
0.4203 0.7276 900 0.1551 0.7852 0.7567 0.7707 0.9588
0.1009 0.8084 1000 0.1361 0.7655 0.7780 0.7717 0.9622
0.1009 0.8892 1100 0.1439 0.7876 0.7697 0.7785 0.9601
0.1009 0.9701 1200 0.1441 0.7775 0.7694 0.7734 0.9612
0.1009 1.0509 1300 0.1282 0.7813 0.8158 0.7982 0.9643
0.1009 1.1318 1400 0.1421 0.7794 0.8054 0.7922 0.9621
0.0791 1.2126 1500 0.1557 0.7163 0.7780 0.7459 0.9528
0.0791 1.2935 1600 0.1460 0.7489 0.7985 0.7729 0.9589
0.0791 1.3743 1700 0.1343 0.7846 0.8031 0.7937 0.9621
0.0791 1.4551 1800 0.1394 0.7944 0.7875 0.7910 0.9611
0.0791 1.5360 1900 0.1504 0.7803 0.8066 0.7932 0.9631
0.0652 1.6168 2000 0.1292 0.7615 0.8247 0.7919 0.9599
0.0652 1.6977 2100 0.1298 0.7993 0.8115 0.8053 0.9644
0.0652 1.7785 2200 0.1498 0.7394 0.8351 0.7844 0.9577
0.0652 1.8593 2300 0.1319 0.7800 0.8086 0.7941 0.9618
0.0652 1.9402 2400 0.1383 0.8145 0.7824 0.7981 0.9648
0.0618 2.0210 2500 0.1210 0.8130 0.8086 0.8108 0.9647

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1