congretimbau

This model is a fine-tuned version of BERTimbau on a dataset with bills of Brazilian law proposals. It achieves the following results on the evaluation set:

  • eval_loss: 0.4885
  • eval_runtime: 798.5704
  • eval_samples_per_second: 169.279
  • eval_steps_per_second: 1.324
  • epoch: 2.3669
  • step: 10000

Training and evaluation data

Data from the Chamber of Deputies and the Federal Senate.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 10

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
3
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for belisards/congretimbau

Finetuned
(103)
this model
Finetunes
5 models

Datasets used to train belisards/congretimbau