File size: 6,250 Bytes
c5c0b58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import argparse
from safetensors import safe_open
from transformers import AutoTokenizer
from pathlib import Path
import torch
import sys
import os
if 'NO_LOCAL_GGUF' not in os.environ:
print(str(Path(__file__).parent / 'gguf-py'))
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
from gguf import *
def k(raw_key: str, arch: str) -> str:
return raw_key.format(arch=arch)
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="../nanoLLaVA")
parser.add_argument("--tokenizer", type=str, default="nanoLLaVA")
args = parser.parse_args()
tensors = safe_open(f'{args.model}/model.safetensors', framework="pt", device="cpu")
### Vision encoder
ftype = 1 # fp16
fname_middle = "mmproj-"
has_text_encoder = False
has_llava_projector = True
fname_out = f"{args.model}/nanollava-mmproj-f16.gguf"
fout = GGUFWriter(fname_out, arch="clip")
fout.add_bool("clip.has_text_encoder", False)
fout.add_bool("clip.has_vision_encoder", True)
fout.add_bool("clip.has_llava_projector", True)
fout.add_file_type(ftype) # fp16
model_name = "qnguyen3/nanoLLaVA"
fout.add_name(model_name)
fout.add_description("image encoder for " + model_name)
fout.add_string("clip.projector_type", "mlp")
# vision model hparams
VISION = "clip.vision"
fout.add_uint32("clip.vision.image_size", 378)
fout.add_uint32("clip.vision.patch_size", 14)
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), 1152)
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 4304)
fout.add_uint32("clip.vision.projection_dim", 2048)
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), 27 + 1)
fout.add_array("clip.vision.image_mean", [0.5, 0.5, 0.5])
fout.add_array("clip.vision.image_std", [0.5, 0.5, 0.5])
fout.add_bool("clip.use_gelu", True) # using regular GELU instead of quick
# vision projection
fout.add_tensor(
"mm.0.weight",
tensors.get_tensor("model.mm_projector.0.weight").to(
torch.float16
).numpy().copy()
)
fout.add_tensor(
"mm.0.bias",
tensors.get_tensor("model.mm_projector.0.bias").to(torch.float32).numpy().copy(),
)
fout.add_tensor(
"mm.2.weight",
tensors.get_tensor("model.mm_projector.2.weight").to(
torch.float16
).numpy().copy(),
)
fout.add_tensor(
"mm.2.bias",
tensors.get_tensor("model.mm_projector.2.bias").to(torch.float32).numpy().copy(),
)
# encoder (siglip)
fout.add_tensor(
"v.position_embd.weight",
tensors.get_tensor("model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight").to(
torch.float16
).numpy().copy(),
)
fout.add_tensor(
"v.patch_embd.weight",
tensors.get_tensor(
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight"
)
.reshape(1152, 3, 14, 14)
.to(torch.float16).numpy().copy(),
)
fout.add_tensor(
"v.patch_embd.bias",
tensors.get_tensor(
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.bias"
).to(torch.float32).numpy().copy(),
)
fout.add_tensor(
"v.post_ln.weight",
tensors.get_tensor("model.vision_tower.vision_tower.vision_model.post_layernorm.weight").to(
torch.float32
).numpy().copy(),
)
fout.add_tensor(
"v.post_ln.bias",
tensors.get_tensor("model.vision_tower.vision_tower.vision_model.post_layernorm.bias").to(
torch.float32
).numpy().copy(),
)
def blk_tensor(i, name):
return tensors.get_tensor(
rf"model.vision_tower.vision_tower.vision_model.encoder.layers.{i}.{name}"
)
def add_tensor(blk_id, gguf_id=None):
if gguf_id is None:
gguf_id = blk_id
fout.add_tensor(f"v.blk.{gguf_id}.attn_q.weight", blk_tensor(blk_id, "self_attn.q_proj.weight").to(torch.float16).numpy().copy())
fout.add_tensor(f"v.blk.{gguf_id}.attn_q.bias", blk_tensor(blk_id, "self_attn.q_proj.bias").to(torch.float32).numpy().copy())
fout.add_tensor(f"v.blk.{gguf_id}.attn_k.weight", blk_tensor(blk_id, "self_attn.k_proj.weight").to(torch.float16).numpy().copy())
fout.add_tensor(f"v.blk.{gguf_id}.attn_k.bias", blk_tensor(blk_id, "self_attn.k_proj.bias").to(torch.float32).numpy().copy())
fout.add_tensor(f"v.blk.{gguf_id}.attn_v.weight", blk_tensor(blk_id, "self_attn.v_proj.weight").to(torch.float16).numpy().copy())
fout.add_tensor(f"v.blk.{gguf_id}.attn_v.bias", blk_tensor(blk_id, "self_attn.v_proj.bias").to(torch.float32).numpy().copy())
fout.add_tensor(
f"v.blk.{gguf_id}.attn_out.weight",
blk_tensor(blk_id, "self_attn.out_proj.weight").to(torch.float16).numpy().copy(),
)
fout.add_tensor(
f"v.blk.{gguf_id}.attn_out.bias",
blk_tensor(blk_id, "self_attn.out_proj.bias").to(torch.float32).numpy().copy(),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ln1.weight",
blk_tensor(blk_id, "layer_norm1.weight").to(torch.float32).numpy().copy(),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ln1.bias",
blk_tensor(blk_id, "layer_norm1.bias").to(torch.float32).numpy().copy(),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ffn_down.weight",
blk_tensor(blk_id, "mlp.fc1.weight").to(torch.float16).numpy().copy(),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ffn_down.bias",
blk_tensor(blk_id, "mlp.fc1.bias").to(torch.float32).numpy().copy(),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ffn_up.weight",
blk_tensor(blk_id, "mlp.fc2.weight").to(torch.float16).numpy().copy(),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ffn_up.bias",
blk_tensor(blk_id, "mlp.fc2.bias").to(torch.float32).numpy().copy(),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ln2.weight",
blk_tensor(blk_id, "layer_norm2.weight").to(torch.float32).numpy().copy(),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ln2.bias",
blk_tensor(blk_id, "layer_norm2.bias").to(torch.float32).numpy().copy(),
)
for i in range(27):
add_tensor(i)
# Duplicate the last block (llava-cli skips over this)
add_tensor(26, 27)
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
print(f'successfully exported to {fname_out}')
|