Upload gguf convert script
Browse files- nanollava_llm_convert.py +0 -0
- nanollava_mmproj_convert.py +190 -0
nanollava_llm_convert.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
nanollava_mmproj_convert.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from safetensors import safe_open
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from pathlib import Path
|
5 |
+
import torch
|
6 |
+
import sys
|
7 |
+
import os
|
8 |
+
|
9 |
+
if 'NO_LOCAL_GGUF' not in os.environ:
|
10 |
+
print(str(Path(__file__).parent / 'gguf-py'))
|
11 |
+
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
12 |
+
|
13 |
+
from gguf import *
|
14 |
+
|
15 |
+
|
16 |
+
def k(raw_key: str, arch: str) -> str:
|
17 |
+
return raw_key.format(arch=arch)
|
18 |
+
|
19 |
+
|
20 |
+
parser = argparse.ArgumentParser()
|
21 |
+
parser.add_argument("--model", type=str, default="../nanoLLaVA")
|
22 |
+
parser.add_argument("--tokenizer", type=str, default="nanoLLaVA")
|
23 |
+
args = parser.parse_args()
|
24 |
+
|
25 |
+
tensors = safe_open(f'{args.model}/model.safetensors', framework="pt", device="cpu")
|
26 |
+
|
27 |
+
### Vision encoder
|
28 |
+
|
29 |
+
ftype = 1 # fp16
|
30 |
+
|
31 |
+
fname_middle = "mmproj-"
|
32 |
+
has_text_encoder = False
|
33 |
+
has_llava_projector = True
|
34 |
+
|
35 |
+
fname_out = f"{args.model}/nanollava-mmproj-f16.gguf"
|
36 |
+
fout = GGUFWriter(fname_out, arch="clip")
|
37 |
+
|
38 |
+
fout.add_bool("clip.has_text_encoder", False)
|
39 |
+
fout.add_bool("clip.has_vision_encoder", True)
|
40 |
+
fout.add_bool("clip.has_llava_projector", True)
|
41 |
+
fout.add_file_type(ftype) # fp16
|
42 |
+
|
43 |
+
model_name = "qnguyen3/nanoLLaVA"
|
44 |
+
fout.add_name(model_name)
|
45 |
+
fout.add_description("image encoder for " + model_name)
|
46 |
+
fout.add_string("clip.projector_type", "mlp")
|
47 |
+
|
48 |
+
# vision model hparams
|
49 |
+
VISION = "clip.vision"
|
50 |
+
fout.add_uint32("clip.vision.image_size", 378)
|
51 |
+
fout.add_uint32("clip.vision.patch_size", 14)
|
52 |
+
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), 1152)
|
53 |
+
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 4304)
|
54 |
+
fout.add_uint32("clip.vision.projection_dim", 2048)
|
55 |
+
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
|
56 |
+
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
|
57 |
+
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), 27 + 1)
|
58 |
+
|
59 |
+
fout.add_array("clip.vision.image_mean", [0.5, 0.5, 0.5])
|
60 |
+
fout.add_array("clip.vision.image_std", [0.5, 0.5, 0.5])
|
61 |
+
fout.add_bool("clip.use_gelu", True) # using regular GELU instead of quick
|
62 |
+
|
63 |
+
# vision projection
|
64 |
+
fout.add_tensor(
|
65 |
+
"mm.0.weight",
|
66 |
+
tensors.get_tensor("model.mm_projector.0.weight").to(
|
67 |
+
torch.float16
|
68 |
+
).numpy().copy()
|
69 |
+
)
|
70 |
+
fout.add_tensor(
|
71 |
+
"mm.0.bias",
|
72 |
+
tensors.get_tensor("model.mm_projector.0.bias").to(torch.float32).numpy().copy(),
|
73 |
+
)
|
74 |
+
fout.add_tensor(
|
75 |
+
"mm.2.weight",
|
76 |
+
tensors.get_tensor("model.mm_projector.2.weight").to(
|
77 |
+
torch.float16
|
78 |
+
).numpy().copy(),
|
79 |
+
)
|
80 |
+
fout.add_tensor(
|
81 |
+
"mm.2.bias",
|
82 |
+
tensors.get_tensor("model.mm_projector.2.bias").to(torch.float32).numpy().copy(),
|
83 |
+
)
|
84 |
+
|
85 |
+
# encoder (siglip)
|
86 |
+
fout.add_tensor(
|
87 |
+
"v.position_embd.weight",
|
88 |
+
tensors.get_tensor("model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight").to(
|
89 |
+
torch.float16
|
90 |
+
).numpy().copy(),
|
91 |
+
)
|
92 |
+
fout.add_tensor(
|
93 |
+
"v.patch_embd.weight",
|
94 |
+
tensors.get_tensor(
|
95 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight"
|
96 |
+
)
|
97 |
+
.reshape(1152, 3, 14, 14)
|
98 |
+
.to(torch.float16).numpy().copy(),
|
99 |
+
)
|
100 |
+
fout.add_tensor(
|
101 |
+
"v.patch_embd.bias",
|
102 |
+
tensors.get_tensor(
|
103 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.bias"
|
104 |
+
).to(torch.float32).numpy().copy(),
|
105 |
+
)
|
106 |
+
|
107 |
+
fout.add_tensor(
|
108 |
+
"v.post_ln.weight",
|
109 |
+
tensors.get_tensor("model.vision_tower.vision_tower.vision_model.post_layernorm.weight").to(
|
110 |
+
torch.float32
|
111 |
+
).numpy().copy(),
|
112 |
+
)
|
113 |
+
fout.add_tensor(
|
114 |
+
"v.post_ln.bias",
|
115 |
+
tensors.get_tensor("model.vision_tower.vision_tower.vision_model.post_layernorm.bias").to(
|
116 |
+
torch.float32
|
117 |
+
).numpy().copy(),
|
118 |
+
)
|
119 |
+
|
120 |
+
def blk_tensor(i, name):
|
121 |
+
return tensors.get_tensor(
|
122 |
+
rf"model.vision_tower.vision_tower.vision_model.encoder.layers.{i}.{name}"
|
123 |
+
)
|
124 |
+
|
125 |
+
def add_tensor(blk_id, gguf_id=None):
|
126 |
+
if gguf_id is None:
|
127 |
+
gguf_id = blk_id
|
128 |
+
|
129 |
+
fout.add_tensor(f"v.blk.{gguf_id}.attn_q.weight", blk_tensor(blk_id, "self_attn.q_proj.weight").to(torch.float16).numpy().copy())
|
130 |
+
fout.add_tensor(f"v.blk.{gguf_id}.attn_q.bias", blk_tensor(blk_id, "self_attn.q_proj.bias").to(torch.float32).numpy().copy())
|
131 |
+
fout.add_tensor(f"v.blk.{gguf_id}.attn_k.weight", blk_tensor(blk_id, "self_attn.k_proj.weight").to(torch.float16).numpy().copy())
|
132 |
+
fout.add_tensor(f"v.blk.{gguf_id}.attn_k.bias", blk_tensor(blk_id, "self_attn.k_proj.bias").to(torch.float32).numpy().copy())
|
133 |
+
fout.add_tensor(f"v.blk.{gguf_id}.attn_v.weight", blk_tensor(blk_id, "self_attn.v_proj.weight").to(torch.float16).numpy().copy())
|
134 |
+
fout.add_tensor(f"v.blk.{gguf_id}.attn_v.bias", blk_tensor(blk_id, "self_attn.v_proj.bias").to(torch.float32).numpy().copy())
|
135 |
+
|
136 |
+
fout.add_tensor(
|
137 |
+
f"v.blk.{gguf_id}.attn_out.weight",
|
138 |
+
blk_tensor(blk_id, "self_attn.out_proj.weight").to(torch.float16).numpy().copy(),
|
139 |
+
)
|
140 |
+
fout.add_tensor(
|
141 |
+
f"v.blk.{gguf_id}.attn_out.bias",
|
142 |
+
blk_tensor(blk_id, "self_attn.out_proj.bias").to(torch.float32).numpy().copy(),
|
143 |
+
)
|
144 |
+
|
145 |
+
fout.add_tensor(
|
146 |
+
f"v.blk.{gguf_id}.ln1.weight",
|
147 |
+
blk_tensor(blk_id, "layer_norm1.weight").to(torch.float32).numpy().copy(),
|
148 |
+
)
|
149 |
+
fout.add_tensor(
|
150 |
+
f"v.blk.{gguf_id}.ln1.bias",
|
151 |
+
blk_tensor(blk_id, "layer_norm1.bias").to(torch.float32).numpy().copy(),
|
152 |
+
)
|
153 |
+
|
154 |
+
fout.add_tensor(
|
155 |
+
f"v.blk.{gguf_id}.ffn_down.weight",
|
156 |
+
blk_tensor(blk_id, "mlp.fc1.weight").to(torch.float16).numpy().copy(),
|
157 |
+
)
|
158 |
+
fout.add_tensor(
|
159 |
+
f"v.blk.{gguf_id}.ffn_down.bias",
|
160 |
+
blk_tensor(blk_id, "mlp.fc1.bias").to(torch.float32).numpy().copy(),
|
161 |
+
)
|
162 |
+
fout.add_tensor(
|
163 |
+
f"v.blk.{gguf_id}.ffn_up.weight",
|
164 |
+
blk_tensor(blk_id, "mlp.fc2.weight").to(torch.float16).numpy().copy(),
|
165 |
+
)
|
166 |
+
fout.add_tensor(
|
167 |
+
f"v.blk.{gguf_id}.ffn_up.bias",
|
168 |
+
blk_tensor(blk_id, "mlp.fc2.bias").to(torch.float32).numpy().copy(),
|
169 |
+
)
|
170 |
+
|
171 |
+
fout.add_tensor(
|
172 |
+
f"v.blk.{gguf_id}.ln2.weight",
|
173 |
+
blk_tensor(blk_id, "layer_norm2.weight").to(torch.float32).numpy().copy(),
|
174 |
+
)
|
175 |
+
fout.add_tensor(
|
176 |
+
f"v.blk.{gguf_id}.ln2.bias",
|
177 |
+
blk_tensor(blk_id, "layer_norm2.bias").to(torch.float32).numpy().copy(),
|
178 |
+
)
|
179 |
+
|
180 |
+
for i in range(27):
|
181 |
+
add_tensor(i)
|
182 |
+
|
183 |
+
# Duplicate the last block (llava-cli skips over this)
|
184 |
+
add_tensor(26, 27)
|
185 |
+
|
186 |
+
fout.write_header_to_file()
|
187 |
+
fout.write_kv_data_to_file()
|
188 |
+
fout.write_tensors_to_file()
|
189 |
+
fout.close()
|
190 |
+
print(f'successfully exported to {fname_out}')
|