bdpedigo's picture
Upload folder using huggingface_hub
830be14 verified
metadata
license: mit
library_name: sklearn
tags:
  - sklearn
  - skops
  - tabular-classification
model_format: skops
model_file: local_compartment_classifier_bd_boxes.skops
widget:
  - structuredData:
      area_nm2:
        - 693824
        - 4852608
        - 17088896
      area_nm2_neighbor_mean:
        - 10181485.714285716
        - 9884429.714285716
        - 9010409.142857144
      area_nm2_neighbor_std:
        - 8312409.263207569
        - 8587259.418816902
        - 8418630.640116522
      max_dt_nm:
        - 69
        - 543
        - 1287
      max_dt_nm_neighbor_mean:
        - 664.7142857142857
        - 630.8571428571429
        - 577.7142857142857
      max_dt_nm_neighbor_std:
        - 479.64240342658945
        - 504.9563358340017
        - 468.41868657651344
      mean_dt_nm:
        - 24.4375
        - 156.5
        - 416
      mean_dt_nm_neighbor_mean:
        - 198.62946428571428
        - 189.19642857142856
        - 170.66071428571428
      mean_dt_nm_neighbor_std:
        - 150.614304054458
        - 157.4368957825056
        - 143.32375093543624
      pca_ratio_01:
        - 1.3849340770961909
        - 1.181656878273399
        - 1.128046800200765
      pca_ratio_01_neighbor_mean:
        - 1.8575624906424115
        - 1.8760422359899387
        - 1.880915879451087
      pca_ratio_01_neighbor_std:
        - 0.641580757345606
        - 0.6228187048854344
        - 0.6165585104590592
      pca_unwrapped_0:
        - -0.0046539306640625
        - -0.497314453125
        - -0.258544921875
      pca_unwrapped_0_neighbor_mean:
        - 0.039224624633789
        - 0.0840119448575106
        - 0.0623056238347833
      pca_unwrapped_0_neighbor_std:
        - 0.3114910605258688
        - 0.2573427692683507
        - 0.296254177168357
      pca_unwrapped_1:
        - 0.7392578125
        - -0.11553955078125
        - 0.2169189453125
      pca_unwrapped_1_neighbor_mean:
        - 0.0941687497225674
        - 0.1718776009299538
        - 0.1416541012850674
      pca_unwrapped_1_neighbor_std:
        - 0.3179467337379631
        - 0.3628551035117971
        - 0.372447324946889
      pca_unwrapped_2:
        - -0.673828125
        - -0.85986328125
        - 0.94140625
      pca_unwrapped_2_neighbor_mean:
        - 0.2258744673295454
        - 0.2427867542613636
        - 0.0790349786931818
      pca_unwrapped_2_neighbor_std:
        - 0.9134250264562896
        - 0.8928014788058292
        - 0.9167197839332804
      pca_unwrapped_3:
        - -0.0302886962890625
        - -0.86572265625
        - 0.57177734375
      pca_unwrapped_3_neighbor_mean:
        - -0.2933238636363636
        - -0.2173753218217329
        - -0.3480571400035511
      pca_unwrapped_3_neighbor_std:
        - 0.6203425764161097
        - 0.5938304683645145
        - 0.5600074530240728
      pca_unwrapped_4:
        - 0.67333984375
        - -0.0005474090576171
        - 0.81982421875
      pca_unwrapped_4_neighbor_mean:
        - 0.2915762121027166
        - 0.3528386896306818
        - 0.2782594507390802
      pca_unwrapped_4_neighbor_std:
        - 0.6415192812587974
        - 0.6430080201673403
        - 0.6308895861182334
      pca_unwrapped_5:
        - 0.73876953125
        - 0.50048828125
        - -0.03192138671875
      pca_unwrapped_5_neighbor_mean:
        - 0.2028697620738636
        - 0.2245316938920454
        - 0.2729325727982954
      pca_unwrapped_5_neighbor_std:
        - 0.265173781606759
        - 0.2994363858938455
        - 0.2968562365279343
      pca_unwrapped_6:
        - 0.99951171875
        - 0.05828857421875
        - -0.77880859375
      pca_unwrapped_6_neighbor_mean:
        - -0.2386505820534446
        - -0.1530848416415128
        - -0.0769850990988991
      pca_unwrapped_6_neighbor_std:
        - 0.6776577717043619
        - 0.7717860533115238
        - 0.7447135522384378
      pca_unwrapped_7:
        - 0.023834228515625
        - -0.9931640625
        - 0.52978515625
      pca_unwrapped_7_neighbor_mean:
        - -0.4803272594105113
        - -0.3878728693181818
        - -0.5263227982954546
      pca_unwrapped_7_neighbor_std:
        - 0.4799926318285017
        - 0.4691567465869561
        - 0.3891669942534205
      pca_unwrapped_8:
        - 0.0192413330078125
        - 0.0997314453125
        - -0.3359375
      pca_unwrapped_8_neighbor_mean:
        - -0.0384375832297585
        - -0.0457548661665482
        - -0.0061485984108664
      pca_unwrapped_8_neighbor_std:
        - 0.3037878488292577
        - 0.3010843368506175
        - 0.2874409267860334
      pca_val_unwrapped_0:
        - 15657.09765625
        - 40668.40625
        - 66863
      pca_val_unwrapped_0_neighbor_mean:
        - 69378.52059659091
        - 67104.76526988637
        - 64723.43856534091
      pca_val_unwrapped_0_neighbor_std:
        - 20242.245019019712
        - 24702.906417865197
        - 25959.16138296664
      pca_val_unwrapped_1:
        - 11305.3017578125
        - 34416.42578125
        - 59273.25
      pca_val_unwrapped_1_neighbor_mean:
        - 41190.40261008523
        - 39089.39133522727
        - 36829.68004261364
      pca_val_unwrapped_1_neighbor_std:
        - 16625.870141811894
        - 18875.56976212627
        - 17666.778281657556
      pca_val_unwrapped_2:
        - 1270.4095458984375
        - 13551.6748046875
        - 47764.625
      pca_val_unwrapped_2_neighbor_mean:
        - 28717.50048828125
        - 27601.021828391335
        - 24490.75362881747
      pca_val_unwrapped_2_neighbor_std:
        - 14988.204981576571
        - 16601.48080038032
        - 15622.078784778376
      post_synapse_count:
        - 0
        - 0
        - 0
      post_synapse_count_neighbor_mean:
        - 0
        - 0
        - 0
      post_synapse_count_neighbor_std:
        - 0
        - 0
        - 0
      pre_synapse_count:
        - 0
        - 0
        - 0
      pre_synapse_count_neighbor_mean:
        - 0
        - 0
        - 0
      pre_synapse_count_neighbor_std:
        - 0
        - 0
        - 0
      size_nm3:
        - 12771840
        - 697943040
        - 7550330880
      size_nm3_neighbor_mean:
        - 3233702034.285714
        - 3184761234.285714
        - 2695304960
      size_nm3_neighbor_std:
        - 3650678969.7909584
        - 3691650923.5639486
        - 3518520747.0511127

Model description

This is a model trained to classify pieces of neuron as axon, dendrite, soma, or glia, based only on their local shape and synapse features.The model is a linear discriminant classifier which was trained on compartment labels generated by Bethanny Danskin for 3 6x6x6 um boxes in the Minnie65 Phase3 dataset.

Intended uses & limitations

This model could be used to predict some compartment labels in mouse cortical connectomes, but it is unclear to what extent this model will generalize.

Training Procedure

The model was trained on local (level 2 cache) and synapse count features from 3 6x6x6 um boxes in the Minnie65 Phase3 dataset. These features were also locally aggregated in 5-hop neighborhood windows and concatenated to each level 2 node's features. The labels were generated by Bethanny Danskin and include axon, dendrite, soma, and glia compartments. The classification model was trained using a linear discriminant classifier.

Hyperparameters

Click to expand
Hyperparameter Value
memory
steps [('transformer', QuantileTransformer(output_distribution='normal')), ('lda', LinearDiscriminantAnalysis(n_components=3))]
verbose False
transformer QuantileTransformer(output_distribution='normal')
lda LinearDiscriminantAnalysis(n_components=3)
transformer__copy True
transformer__ignore_implicit_zeros False
transformer__n_quantiles 1000
transformer__output_distribution normal
transformer__random_state
transformer__subsample 10000
lda__covariance_estimator
lda__n_components 3
lda__priors
lda__shrinkage
lda__solver svd
lda__store_covariance False
lda__tol 0.0001

Model Plot

Pipeline(steps=[('transformer',QuantileTransformer(output_distribution='normal')),('lda', LinearDiscriminantAnalysis(n_components=3))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Evaluation Results

Classification Report (overall)

type precision recall f1-score support
accuracy 0.944357 0.944357 0.944357 0.944357
macro avg 0.854825 0.917289 0.878753 31307
weighted avg 0.946879 0.944357 0.945155 31307

Classification Report (by class)

class precision recall f1-score support
axon 0.956309 0.964704 0.960488 16404
dendrite 0.928038 0.911341 0.919614 6948
glia 0.964442 0.935279 0.949636 7540
soma 0.570513 0.857831 0.685274 415

How to Get Started with the Model

[More Information Needed]

Model Card Authors

Ben Pedigo Bethanny Danskin