license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: skops
model_file: local_compartment_classifier_bd_boxes.skops
widget:
- structuredData:
area_nm2:
- 693824
- 4852608
- 17088896
area_nm2_neighbor_mean:
- 10181485.714285716
- 9884429.714285716
- 9010409.142857144
area_nm2_neighbor_std:
- 8312409.263207569
- 8587259.418816902
- 8418630.640116522
max_dt_nm:
- 69
- 543
- 1287
max_dt_nm_neighbor_mean:
- 664.7142857142857
- 630.8571428571429
- 577.7142857142857
max_dt_nm_neighbor_std:
- 479.64240342658945
- 504.9563358340017
- 468.41868657651344
mean_dt_nm:
- 24.4375
- 156.5
- 416
mean_dt_nm_neighbor_mean:
- 198.62946428571428
- 189.19642857142856
- 170.66071428571428
mean_dt_nm_neighbor_std:
- 150.614304054458
- 157.4368957825056
- 143.32375093543624
pca_ratio_01:
- 1.3849340770961909
- 1.181656878273399
- 1.128046800200765
pca_ratio_01_neighbor_mean:
- 1.8575624906424115
- 1.8760422359899387
- 1.880915879451087
pca_ratio_01_neighbor_std:
- 0.641580757345606
- 0.6228187048854344
- 0.6165585104590592
pca_unwrapped_0:
- -0.0046539306640625
- -0.497314453125
- -0.258544921875
pca_unwrapped_0_neighbor_mean:
- 0.039224624633789
- 0.0840119448575106
- 0.0623056238347833
pca_unwrapped_0_neighbor_std:
- 0.3114910605258688
- 0.2573427692683507
- 0.296254177168357
pca_unwrapped_1:
- 0.7392578125
- -0.11553955078125
- 0.2169189453125
pca_unwrapped_1_neighbor_mean:
- 0.0941687497225674
- 0.1718776009299538
- 0.1416541012850674
pca_unwrapped_1_neighbor_std:
- 0.3179467337379631
- 0.3628551035117971
- 0.372447324946889
pca_unwrapped_2:
- -0.673828125
- -0.85986328125
- 0.94140625
pca_unwrapped_2_neighbor_mean:
- 0.2258744673295454
- 0.2427867542613636
- 0.0790349786931818
pca_unwrapped_2_neighbor_std:
- 0.9134250264562896
- 0.8928014788058292
- 0.9167197839332804
pca_unwrapped_3:
- -0.0302886962890625
- -0.86572265625
- 0.57177734375
pca_unwrapped_3_neighbor_mean:
- -0.2933238636363636
- -0.2173753218217329
- -0.3480571400035511
pca_unwrapped_3_neighbor_std:
- 0.6203425764161097
- 0.5938304683645145
- 0.5600074530240728
pca_unwrapped_4:
- 0.67333984375
- -0.0005474090576171
- 0.81982421875
pca_unwrapped_4_neighbor_mean:
- 0.2915762121027166
- 0.3528386896306818
- 0.2782594507390802
pca_unwrapped_4_neighbor_std:
- 0.6415192812587974
- 0.6430080201673403
- 0.6308895861182334
pca_unwrapped_5:
- 0.73876953125
- 0.50048828125
- -0.03192138671875
pca_unwrapped_5_neighbor_mean:
- 0.2028697620738636
- 0.2245316938920454
- 0.2729325727982954
pca_unwrapped_5_neighbor_std:
- 0.265173781606759
- 0.2994363858938455
- 0.2968562365279343
pca_unwrapped_6:
- 0.99951171875
- 0.05828857421875
- -0.77880859375
pca_unwrapped_6_neighbor_mean:
- -0.2386505820534446
- -0.1530848416415128
- -0.0769850990988991
pca_unwrapped_6_neighbor_std:
- 0.6776577717043619
- 0.7717860533115238
- 0.7447135522384378
pca_unwrapped_7:
- 0.023834228515625
- -0.9931640625
- 0.52978515625
pca_unwrapped_7_neighbor_mean:
- -0.4803272594105113
- -0.3878728693181818
- -0.5263227982954546
pca_unwrapped_7_neighbor_std:
- 0.4799926318285017
- 0.4691567465869561
- 0.3891669942534205
pca_unwrapped_8:
- 0.0192413330078125
- 0.0997314453125
- -0.3359375
pca_unwrapped_8_neighbor_mean:
- -0.0384375832297585
- -0.0457548661665482
- -0.0061485984108664
pca_unwrapped_8_neighbor_std:
- 0.3037878488292577
- 0.3010843368506175
- 0.2874409267860334
pca_val_unwrapped_0:
- 15657.09765625
- 40668.40625
- 66863
pca_val_unwrapped_0_neighbor_mean:
- 69378.52059659091
- 67104.76526988637
- 64723.43856534091
pca_val_unwrapped_0_neighbor_std:
- 20242.245019019712
- 24702.906417865197
- 25959.16138296664
pca_val_unwrapped_1:
- 11305.3017578125
- 34416.42578125
- 59273.25
pca_val_unwrapped_1_neighbor_mean:
- 41190.40261008523
- 39089.39133522727
- 36829.68004261364
pca_val_unwrapped_1_neighbor_std:
- 16625.870141811894
- 18875.56976212627
- 17666.778281657556
pca_val_unwrapped_2:
- 1270.4095458984375
- 13551.6748046875
- 47764.625
pca_val_unwrapped_2_neighbor_mean:
- 28717.50048828125
- 27601.021828391335
- 24490.75362881747
pca_val_unwrapped_2_neighbor_std:
- 14988.204981576571
- 16601.48080038032
- 15622.078784778376
post_synapse_count:
- 0
- 0
- 0
post_synapse_count_neighbor_mean:
- 0
- 0
- 0
post_synapse_count_neighbor_std:
- 0
- 0
- 0
pre_synapse_count:
- 0
- 0
- 0
pre_synapse_count_neighbor_mean:
- 0
- 0
- 0
pre_synapse_count_neighbor_std:
- 0
- 0
- 0
size_nm3:
- 12771840
- 697943040
- 7550330880
size_nm3_neighbor_mean:
- 3233702034.285714
- 3184761234.285714
- 2695304960
size_nm3_neighbor_std:
- 3650678969.7909584
- 3691650923.5639486
- 3518520747.0511127
Model description
This is a model trained to classify pieces of neuron as axon, dendrite, soma, or glia, based only on their local shape and synapse features.The model is a linear discriminant classifier which was trained on compartment labels generated by Bethanny Danskin for 3 6x6x6 um boxes in the Minnie65 Phase3 dataset.
Intended uses & limitations
This model could be used to predict some compartment labels in mouse cortical connectomes, but it is unclear to what extent this model will generalize.
Training Procedure
The model was trained on local (level 2 cache) and synapse count features from 3 6x6x6 um boxes in the Minnie65 Phase3 dataset. These features were also locally aggregated in 5-hop neighborhood windows and concatenated to each level 2 node's features. The labels were generated by Bethanny Danskin and include axon, dendrite, soma, and glia compartments. The classification model was trained using a linear discriminant classifier.
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('transformer', QuantileTransformer(output_distribution='normal')), ('lda', LinearDiscriminantAnalysis(n_components=3))] |
verbose | False |
transformer | QuantileTransformer(output_distribution='normal') |
lda | LinearDiscriminantAnalysis(n_components=3) |
transformer__copy | True |
transformer__ignore_implicit_zeros | False |
transformer__n_quantiles | 1000 |
transformer__output_distribution | normal |
transformer__random_state | |
transformer__subsample | 10000 |
lda__covariance_estimator | |
lda__n_components | 3 |
lda__priors | |
lda__shrinkage | |
lda__solver | svd |
lda__store_covariance | False |
lda__tol | 0.0001 |
Model Plot
Pipeline(steps=[('transformer',QuantileTransformer(output_distribution='normal')),('lda', LinearDiscriminantAnalysis(n_components=3))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('transformer',QuantileTransformer(output_distribution='normal')),('lda', LinearDiscriminantAnalysis(n_components=3))])
QuantileTransformer(output_distribution='normal')
LinearDiscriminantAnalysis(n_components=3)
Evaluation Results
Classification Report (overall)
type | precision | recall | f1-score | support |
---|---|---|---|---|
accuracy | 0.944357 | 0.944357 | 0.944357 | 0.944357 |
macro avg | 0.854825 | 0.917289 | 0.878753 | 31307 |
weighted avg | 0.946879 | 0.944357 | 0.945155 | 31307 |
Classification Report (by class)
class | precision | recall | f1-score | support |
---|---|---|---|---|
axon | 0.956309 | 0.964704 | 0.960488 | 16404 |
dendrite | 0.928038 | 0.911341 | 0.919614 | 6948 |
glia | 0.964442 | 0.935279 | 0.949636 | 7540 |
soma | 0.570513 | 0.857831 | 0.685274 | 415 |
How to Get Started with the Model
[More Information Needed]
Model Card Authors
Ben Pedigo Bethanny Danskin