vit-base_rvl_cdip-N1K_aAURC_256

This model is a fine-tuned version of jordyvl/vit-base_rvl-cdip on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4424
  • Accuracy: 0.8932
  • Brier Loss: 0.1751
  • Nll: 1.0235
  • F1 Micro: 0.8932
  • F1 Macro: 0.8934
  • Ece: 0.0697
  • Aurc: 0.0181

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 63 0.3624 0.8972 0.1554 1.1865 0.8972 0.8975 0.0426 0.0165
No log 2.0 126 0.3717 0.8965 0.1582 1.1519 0.8965 0.8967 0.0460 0.0170
No log 3.0 189 0.3988 0.8922 0.1690 1.1118 0.8922 0.8927 0.0578 0.0177
No log 4.0 252 0.4032 0.8942 0.1677 1.0854 0.8942 0.8946 0.0590 0.0177
No log 5.0 315 0.4195 0.894 0.1706 1.0664 0.894 0.8942 0.0628 0.0179
No log 6.0 378 0.4251 0.8955 0.1711 1.0462 0.8955 0.8957 0.0637 0.0179
No log 7.0 441 0.4341 0.8925 0.1726 1.0210 0.8925 0.8927 0.0682 0.0181
0.057 8.0 504 0.4379 0.893 0.1744 1.0253 0.893 0.8932 0.0687 0.0180
0.057 9.0 567 0.4411 0.8928 0.1748 1.0200 0.8928 0.8929 0.0712 0.0181
0.057 10.0 630 0.4424 0.8932 0.1751 1.0235 0.8932 0.8934 0.0697 0.0181

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.2.0.dev20231002
  • Datasets 2.7.1
  • Tokenizers 0.13.3
Downloads last month
165
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for bdpc/vit-base_rvl_cdip-N1K_aAURC_256

Finetuned
(25)
this model