vit-base_rvl_cdip-N1K_AURC_128
This model is a fine-tuned version of jordyvl/vit-base_rvl-cdip on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2754
- Accuracy: 0.8962
- Brier Loss: 0.1742
- Nll: 0.8794
- F1 Micro: 0.8962
- F1 Macro: 0.8963
- Ece: 0.0736
- Aurc: 0.0200
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 125 | 0.1357 | 0.8898 | 0.1657 | 1.2064 | 0.8898 | 0.8907 | 0.0492 | 0.0181 |
No log | 2.0 | 250 | 0.1615 | 0.898 | 0.1602 | 1.0955 | 0.898 | 0.8986 | 0.0473 | 0.0181 |
No log | 3.0 | 375 | 0.1795 | 0.896 | 0.1630 | 1.0031 | 0.8960 | 0.8959 | 0.0599 | 0.0180 |
0.0132 | 4.0 | 500 | 0.2094 | 0.8978 | 0.1662 | 0.9561 | 0.8978 | 0.8977 | 0.0633 | 0.0187 |
0.0132 | 5.0 | 625 | 0.2290 | 0.898 | 0.1692 | 0.9249 | 0.898 | 0.8979 | 0.0665 | 0.0190 |
0.0132 | 6.0 | 750 | 0.2430 | 0.898 | 0.1714 | 0.9150 | 0.898 | 0.8981 | 0.0690 | 0.0194 |
0.0132 | 7.0 | 875 | 0.2567 | 0.898 | 0.1718 | 0.8888 | 0.898 | 0.8979 | 0.0702 | 0.0196 |
0.0022 | 8.0 | 1000 | 0.2740 | 0.8975 | 0.1734 | 0.8800 | 0.8975 | 0.8975 | 0.0718 | 0.0199 |
0.0022 | 9.0 | 1125 | 0.2715 | 0.896 | 0.1743 | 0.8824 | 0.8960 | 0.8960 | 0.0737 | 0.0199 |
0.0022 | 10.0 | 1250 | 0.2754 | 0.8962 | 0.1742 | 0.8794 | 0.8962 | 0.8963 | 0.0736 | 0.0200 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.2.0.dev20231002
- Datasets 2.7.1
- Tokenizers 0.13.3
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for bdpc/vit-base_rvl_cdip-N1K_AURC_128
Base model
jordyvl/vit-base_rvl-cdip