bdpc's picture
Saving best model of SciBERT_AsymmetricLoss_25K_bs64_P4_N1 to hub
4011776 verified
metadata
base_model: allenai/scibert_scivocab_uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: SciBERT_AsymmetricLoss_25K_bs64_P4_N1
    results: []

SciBERT_AsymmetricLoss_25K_bs64_P4_N1

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 30.2502
  • Accuracy: 0.9871
  • Precision: 0.4247
  • Recall: 0.8998
  • F1: 0.5770
  • Hamming: 0.0129

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 25000

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Hamming
36.6287 0.16 5000 34.9978 0.9852 0.3863 0.8728 0.5355 0.0148
33.8929 0.32 10000 32.4942 0.9857 0.3958 0.8901 0.5480 0.0143
32.5419 0.47 15000 31.3170 0.9867 0.4162 0.8941 0.5680 0.0133
31.565 0.63 20000 30.6092 0.9869 0.4201 0.8975 0.5723 0.0131
31.105 0.79 25000 30.2502 0.9871 0.4247 0.8998 0.5770 0.0129

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.7.1
  • Tokenizers 0.14.1