cnn_summarization

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 8.8745
  • eval_runtime: 108.5152
  • eval_samples_per_second: 105.884
  • eval_steps_per_second: 2.212
  • epoch: 0.9592
  • step: 100

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 192
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
77.7M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .