lilt-en-funsd / README.md
bathmaraj's picture
End of training
f10910c verified
|
raw
history blame
7.9 kB
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7177
  • Answer: {'precision': 0.8729411764705882, 'recall': 0.9082007343941249, 'f1': 0.8902219556088783, 'number': 817}
  • Header: {'precision': 0.6421052631578947, 'recall': 0.5126050420168067, 'f1': 0.5700934579439252, 'number': 119}
  • Question: {'precision': 0.906021897810219, 'recall': 0.9220055710306406, 'f1': 0.9139438564196963, 'number': 1077}
  • Overall Precision: 0.8800
  • Overall Recall: 0.8922
  • Overall F1: 0.8860
  • Overall Accuracy: 0.8064

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4044 10.5263 200 1.1266 {'precision': 0.8246606334841629, 'recall': 0.8922888616891065, 'f1': 0.8571428571428571, 'number': 817} {'precision': 0.3495575221238938, 'recall': 0.6638655462184874, 'f1': 0.4579710144927537, 'number': 119} {'precision': 0.8747609942638623, 'recall': 0.8495821727019499, 'f1': 0.8619877531794631, 'number': 1077} 0.7992 0.8559 0.8266 0.7671
0.0518 21.0526 400 1.2142 {'precision': 0.8138006571741512, 'recall': 0.9094247246022031, 'f1': 0.8589595375722543, 'number': 817} {'precision': 0.49612403100775193, 'recall': 0.5378151260504201, 'f1': 0.5161290322580645, 'number': 119} {'precision': 0.8705234159779615, 'recall': 0.8802228412256268, 'f1': 0.8753462603878117, 'number': 1077} 0.8236 0.8718 0.8470 0.8011
0.0137 31.5789 600 1.5789 {'precision': 0.8478513356562137, 'recall': 0.8935128518971848, 'f1': 0.8700834326579261, 'number': 817} {'precision': 0.5588235294117647, 'recall': 0.4789915966386555, 'f1': 0.5158371040723981, 'number': 119} {'precision': 0.8839528558476881, 'recall': 0.9052924791086351, 'f1': 0.8944954128440367, 'number': 1077} 0.8529 0.8753 0.8639 0.7932
0.008 42.1053 800 1.5466 {'precision': 0.8540478905359179, 'recall': 0.9167686658506732, 'f1': 0.8842975206611571, 'number': 817} {'precision': 0.528169014084507, 'recall': 0.6302521008403361, 'f1': 0.5747126436781609, 'number': 119} {'precision': 0.899074074074074, 'recall': 0.9015784586815228, 'f1': 0.9003245248029671, 'number': 1077} 0.8552 0.8917 0.8731 0.7876
0.0047 52.6316 1000 1.5218 {'precision': 0.8712029161603888, 'recall': 0.8776009791921665, 'f1': 0.874390243902439, 'number': 817} {'precision': 0.5882352941176471, 'recall': 0.5042016806722689, 'f1': 0.5429864253393665, 'number': 119} {'precision': 0.9080459770114943, 'recall': 0.8802228412256268, 'f1': 0.8939179632248938, 'number': 1077} 0.8761 0.8569 0.8664 0.8023
0.0026 63.1579 1200 1.6588 {'precision': 0.8784596871239471, 'recall': 0.8935128518971848, 'f1': 0.8859223300970873, 'number': 817} {'precision': 0.532258064516129, 'recall': 0.5546218487394958, 'f1': 0.54320987654321, 'number': 119} {'precision': 0.8739946380697051, 'recall': 0.9080779944289693, 'f1': 0.8907103825136613, 'number': 1077} 0.8554 0.8813 0.8681 0.7971
0.0013 73.6842 1400 1.6428 {'precision': 0.903822441430333, 'recall': 0.8971848225214198, 'f1': 0.9004914004914006, 'number': 817} {'precision': 0.6166666666666667, 'recall': 0.6218487394957983, 'f1': 0.6192468619246863, 'number': 119} {'precision': 0.9017132551848512, 'recall': 0.9285051067780873, 'f1': 0.9149130832570905, 'number': 1077} 0.8858 0.8977 0.8917 0.8127
0.0009 84.2105 1600 1.6516 {'precision': 0.8909090909090909, 'recall': 0.8996328029375765, 'f1': 0.8952496954933008, 'number': 817} {'precision': 0.6132075471698113, 'recall': 0.5462184873949579, 'f1': 0.5777777777777778, 'number': 119} {'precision': 0.9070837166513339, 'recall': 0.9155060352831941, 'f1': 0.911275415896488, 'number': 1077} 0.8850 0.8872 0.8861 0.8116
0.0007 94.7368 1800 1.7017 {'precision': 0.8470319634703196, 'recall': 0.9082007343941249, 'f1': 0.8765505020673362, 'number': 817} {'precision': 0.6521739130434783, 'recall': 0.5042016806722689, 'f1': 0.5687203791469194, 'number': 119} {'precision': 0.8938547486033519, 'recall': 0.8913649025069638, 'f1': 0.8926080892608089, 'number': 1077} 0.8629 0.8753 0.8691 0.8004
0.0004 105.2632 2000 1.7304 {'precision': 0.8624708624708625, 'recall': 0.9057527539779682, 'f1': 0.8835820895522388, 'number': 817} {'precision': 0.6095238095238096, 'recall': 0.5378151260504201, 'f1': 0.5714285714285715, 'number': 119} {'precision': 0.906046511627907, 'recall': 0.904363974001857, 'f1': 0.9052044609665427, 'number': 1077} 0.8724 0.8833 0.8778 0.8019
0.0003 115.7895 2200 1.7230 {'precision': 0.8723404255319149, 'recall': 0.9033047735618115, 'f1': 0.8875526157546603, 'number': 817} {'precision': 0.6702127659574468, 'recall': 0.5294117647058824, 'f1': 0.5915492957746479, 'number': 119} {'precision': 0.8992740471869328, 'recall': 0.9201485608170845, 'f1': 0.9095915557595228, 'number': 1077} 0.8776 0.8902 0.8838 0.8049
0.0002 126.3158 2400 1.7177 {'precision': 0.8729411764705882, 'recall': 0.9082007343941249, 'f1': 0.8902219556088783, 'number': 817} {'precision': 0.6421052631578947, 'recall': 0.5126050420168067, 'f1': 0.5700934579439252, 'number': 119} {'precision': 0.906021897810219, 'recall': 0.9220055710306406, 'f1': 0.9139438564196963, 'number': 1077} 0.8800 0.8922 0.8860 0.8064

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1