lilt-en-funsd / README.md
bathmaraj's picture
End of training
79b501f verified
|
raw
history blame
7.9 kB
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6214
  • Answer: {'precision': 0.8792899408284024, 'recall': 0.9094247246022031, 'f1': 0.8941034897713599, 'number': 817}
  • Header: {'precision': 0.6078431372549019, 'recall': 0.5210084033613446, 'f1': 0.5610859728506787, 'number': 119}
  • Question: {'precision': 0.8960573476702509, 'recall': 0.9285051067780873, 'f1': 0.9119927040583674, 'number': 1077}
  • Overall Precision: 0.8749
  • Overall Recall: 0.8967
  • Overall F1: 0.8857
  • Overall Accuracy: 0.8129

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4022 10.5263 200 1.0717 {'precision': 0.8156424581005587, 'recall': 0.8935128518971848, 'f1': 0.852803738317757, 'number': 817} {'precision': 0.452991452991453, 'recall': 0.44537815126050423, 'f1': 0.4491525423728814, 'number': 119} {'precision': 0.8516579406631762, 'recall': 0.9062209842154132, 'f1': 0.8780926675663517, 'number': 1077} 0.8151 0.8738 0.8434 0.7966
0.0484 21.0526 400 1.2460 {'precision': 0.8537794299876085, 'recall': 0.8433292533659731, 'f1': 0.8485221674876847, 'number': 817} {'precision': 0.5454545454545454, 'recall': 0.5546218487394958, 'f1': 0.5499999999999999, 'number': 119} {'precision': 0.8713398402839396, 'recall': 0.9117920148560817, 'f1': 0.8911070780399274, 'number': 1077} 0.8453 0.8629 0.8540 0.8008
0.0143 31.5789 600 1.5585 {'precision': 0.8566433566433567, 'recall': 0.8996328029375765, 'f1': 0.8776119402985075, 'number': 817} {'precision': 0.5294117647058824, 'recall': 0.5294117647058824, 'f1': 0.5294117647058824, 'number': 119} {'precision': 0.8879310344827587, 'recall': 0.8607242339832869, 'f1': 0.8741159830268741, 'number': 1077} 0.8535 0.8569 0.8552 0.7935
0.0079 42.1053 800 1.5146 {'precision': 0.8556338028169014, 'recall': 0.8922888616891065, 'f1': 0.8735769922109047, 'number': 817} {'precision': 0.47761194029850745, 'recall': 0.5378151260504201, 'f1': 0.5059288537549407, 'number': 119} {'precision': 0.8851540616246498, 'recall': 0.8802228412256268, 'f1': 0.88268156424581, 'number': 1077} 0.8464 0.8649 0.8555 0.7989
0.0041 52.6316 1000 1.5279 {'precision': 0.8536299765807962, 'recall': 0.8922888616891065, 'f1': 0.8725314183123878, 'number': 817} {'precision': 0.6, 'recall': 0.5042016806722689, 'f1': 0.547945205479452, 'number': 119} {'precision': 0.8764342453662842, 'recall': 0.9220055710306406, 'f1': 0.8986425339366516, 'number': 1077} 0.8539 0.8852 0.8693 0.8063
0.0031 63.1579 1200 1.5225 {'precision': 0.8413793103448276, 'recall': 0.8959608323133414, 'f1': 0.8678126852400712, 'number': 817} {'precision': 0.5794392523364486, 'recall': 0.5210084033613446, 'f1': 0.5486725663716815, 'number': 119} {'precision': 0.8873499538319483, 'recall': 0.8922934076137419, 'f1': 0.8898148148148148, 'number': 1077} 0.8519 0.8718 0.8618 0.8014
0.0016 73.6842 1400 1.6214 {'precision': 0.8792899408284024, 'recall': 0.9094247246022031, 'f1': 0.8941034897713599, 'number': 817} {'precision': 0.6078431372549019, 'recall': 0.5210084033613446, 'f1': 0.5610859728506787, 'number': 119} {'precision': 0.8960573476702509, 'recall': 0.9285051067780873, 'f1': 0.9119927040583674, 'number': 1077} 0.8749 0.8967 0.8857 0.8129
0.0011 84.2105 1600 1.7158 {'precision': 0.8770186335403727, 'recall': 0.8641370869033048, 'f1': 0.8705302096177557, 'number': 817} {'precision': 0.5419847328244275, 'recall': 0.5966386554621849, 'f1': 0.568, 'number': 119} {'precision': 0.9052044609665427, 'recall': 0.904363974001857, 'f1': 0.9047840222944729, 'number': 1077} 0.8703 0.8698 0.8701 0.8070
0.001 94.7368 1800 1.6261 {'precision': 0.8481735159817352, 'recall': 0.9094247246022031, 'f1': 0.8777318369757826, 'number': 817} {'precision': 0.6017699115044248, 'recall': 0.5714285714285714, 'f1': 0.5862068965517241, 'number': 119} {'precision': 0.9050751879699248, 'recall': 0.8941504178272981, 'f1': 0.8995796356842597, 'number': 1077} 0.8641 0.8813 0.8726 0.8128
0.0004 105.2632 2000 1.6253 {'precision': 0.8611435239206534, 'recall': 0.9033047735618115, 'f1': 0.8817204301075269, 'number': 817} {'precision': 0.625, 'recall': 0.5462184873949579, 'f1': 0.5829596412556054, 'number': 119} {'precision': 0.894404332129964, 'recall': 0.9201485608170845, 'f1': 0.9070938215102976, 'number': 1077} 0.8671 0.8912 0.8790 0.8194
0.0001 115.7895 2200 1.6711 {'precision': 0.8823529411764706, 'recall': 0.8812729498164015, 'f1': 0.8818126148193509, 'number': 817} {'precision': 0.6283185840707964, 'recall': 0.5966386554621849, 'f1': 0.6120689655172413, 'number': 119} {'precision': 0.8967391304347826, 'recall': 0.9192200557103064, 'f1': 0.9078404401650619, 'number': 1077} 0.8760 0.8847 0.8804 0.8190
0.0002 126.3158 2400 1.6682 {'precision': 0.8756038647342995, 'recall': 0.8873929008567931, 'f1': 0.8814589665653496, 'number': 817} {'precision': 0.6330275229357798, 'recall': 0.5798319327731093, 'f1': 0.6052631578947367, 'number': 119} {'precision': 0.8997289972899729, 'recall': 0.924791086350975, 'f1': 0.9120879120879122, 'number': 1077} 0.8757 0.8892 0.8824 0.8179

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1