michaelfeil commited on
Commit
ba00089
·
verified ·
1 Parent(s): 500d875

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -199
README.md CHANGED
@@ -1,199 +1,67 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ ```python
2
+ #!/usr/bin/env python
3
+ import torch
4
+ from transformers import (
5
+ AutoConfig,
6
+ AutoTokenizer,
7
+ AutoModelForCausalLM,
8
+ LlamaForSequenceClassification,
9
+ )
10
+ # install torch, transformers, accelerate
11
+
12
+ def main():
13
+ # Define the input and output repository names.
14
+ input_model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
15
+ split_2 = input_model_id.split("/")[1]
16
+ output_model_id = f"baseten/example-{split_2}ForSequenceClassification"
17
+
18
+ # Load the original configuration.
19
+ # (If needed, add trust_remote_code=True for custom implementations.)
20
+ config = AutoConfig.from_pretrained(input_model_id)
21
+
22
+ # Update the config for a sequence classification task with 10 labels.
23
+ num_labels = 30
24
+ config.num_labels = num_labels
25
+ config.id2label = {i: f"token activation {i}" for i in range(num_labels)}
26
+ config.label2id = {f"token activation {i}": i for i in range(num_labels)}
27
+
28
+ # Download the tokenizer from the original model.
29
+ tokenizer = AutoTokenizer.from_pretrained(input_model_id)
30
+
31
+ # Load the original causal LM model.
32
+ lm_model = AutoModelForCausalLM.from_pretrained(input_model_id, config=config, device_map="auto", low_cpu_mem_usage=True)
33
+ config.architectures = ["LlamaForSequenceClassification"]
34
+ del lm_model.model
35
+ print("loaded lm model")
36
+ # Initialize the sequence classification model.
37
+ # NOTE: We are using the built-in LlamaForSequenceClassification,
38
+ # which uses a `.score` attribute as the output head.
39
+ seq_cls_model = LlamaForSequenceClassification.from_pretrained(input_model_id, config=config, device_map="auto", low_cpu_mem_usage=True)
40
+
41
+ # --- Initialize the Classification Head ---
42
+ # Here we re-use the first 10 rows from the original LM head
43
+ # (i.e. rows 0 to 9) to initialize the new classification head.
44
+ with torch.no_grad():
45
+ # lm_model.lm_head.weight has shape [vocab_size, hidden_size]
46
+ # We take the first 10 rows to form a [10, hidden_size] weight matrix.
47
+ seq_cls_model.score.weight.copy_(lm_model.lm_head.weight.data[:num_labels, :])
48
+ if lm_model.lm_head.bias is not None:
49
+ seq_cls_model.score.bias.copy_(lm_model.lm_head.bias.data[:num_labels])
50
+
51
+ # Optionally, save the new model locally.
52
+ # save_directory = f"./{output_model_id.replace('/','_')}"
53
+ # seq_cls_model.save_pretrained(save_directory)
54
+ # tokenizer.save_pretrained(save_directory)
55
+
56
+ # Push the new model and tokenizer to the Hub.
57
+ # (Ensure you are authenticated with Hugging Face Hub via `huggingface-cli login`.)
58
+ tokenizer.push_to_hub(output_model_id)
59
+ seq_cls_model.push_to_hub(output_model_id)
60
+
61
+
62
+ print(f"New model pushed to the Hub: {output_model_id}")
63
+
64
+ if __name__ == "__main__":
65
+ main()
66
+
67
+ ```