YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
#!/usr/bin/env python
import torch
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForCausalLM,
LlamaForSequenceClassification,
)
# install torch, transformers, accelerate
def main():
# Define the input and output repository names.
input_model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
split_2 = input_model_id.split("/")[1]
output_model_id = f"baseten/example-{split_2}ForSequenceClassification"
# Load the original configuration.
# (If needed, add trust_remote_code=True for custom implementations.)
config = AutoConfig.from_pretrained(input_model_id)
# Update the config for a sequence classification task with 10 labels.
num_labels = 30
config.num_labels = num_labels
config.id2label = {i: f"token activation {i}" for i in range(num_labels)}
config.label2id = {f"token activation {i}": i for i in range(num_labels)}
# Download the tokenizer from the original model.
tokenizer = AutoTokenizer.from_pretrained(input_model_id)
# Load the original causal LM model.
lm_model = AutoModelForCausalLM.from_pretrained(input_model_id, config=config, device_map="auto", low_cpu_mem_usage=True)
config.architectures = ["LlamaForSequenceClassification"]
del lm_model.model
print("loaded lm model")
# Initialize the sequence classification model.
# NOTE: We are using the built-in LlamaForSequenceClassification,
# which uses a `.score` attribute as the output head.
seq_cls_model = LlamaForSequenceClassification.from_pretrained(input_model_id, config=config, device_map="auto", low_cpu_mem_usage=True)
# --- Initialize the Classification Head ---
# Here we re-use the first 10 rows from the original LM head
# (i.e. rows 0 to 9) to initialize the new classification head.
with torch.no_grad():
# lm_model.lm_head.weight has shape [vocab_size, hidden_size]
# We take the first 10 rows to form a [10, hidden_size] weight matrix.
seq_cls_model.score.weight.copy_(lm_model.lm_head.weight.data[:num_labels, :])
if lm_model.lm_head.bias is not None:
seq_cls_model.score.bias.copy_(lm_model.lm_head.bias.data[:num_labels])
# Optionally, save the new model locally.
# save_directory = f"./{output_model_id.replace('/','_')}"
# seq_cls_model.save_pretrained(save_directory)
# tokenizer.save_pretrained(save_directory)
# Push the new model and tokenizer to the Hub.
# (Ensure you are authenticated with Hugging Face Hub via `huggingface-cli login`.)
tokenizer.push_to_hub(output_model_id)
seq_cls_model.push_to_hub(output_model_id)
print(f"New model pushed to the Hub: {output_model_id}")
if __name__ == "__main__":
main()
- Downloads last month
- 20
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.