Karols's picture
Update README.md
128ef8c
metadata
language: pl
tags:
  - text-classification
  - twitter
datasets:
  - datasets/tweet_eval
metrics:
  - f1
  - accuracy
  - precision
  - recall
widget:
  - text: >-
      Nigdy przegrana nie sprawiła mi takiej radości. Szczęście i Opatrzność
      mają znaczenie Gratuluje @pzpn_pl
    example_title: Example 1
  - text: >-
      Osoby z Ukrainy zapłacą za życie w centrach pomocy? Sprzeczne prawem UE,
      niehumanitarne, okrutne.
    example_title: Example 2

Twitter emotion PL (base)

Twitter emotion PL (base) is a model based on herbert-base for analyzing emotion of Polish twitter posts. It was trained on the translated version of TweetEval by Barbieri et al., 2020 for 10 epochs on single RTX3090 gpu.

The model will give you a four labels: joy, optimism, sadness and anger.

How to use

You can use this model directly with a pipeline for text classification:

from transformers import pipeline

nlp = pipeline("text-classification", model="bardsai/twitter-emotion-pl-base")
nlp("Nigdy przegrana nie sprawiła mi takiej radości. Szczęście i Opatrzność mają znaczenie Gratuluje @pzpn_pl")
[{'label': 'joy', 'score': 0.5163766145706177}]

Performance

Metric Value
f1 macro 0.756
precision macro 0.767
recall macro 0.750
accuracy 0.789
samples per second 131.6

(The performance was evaluated on RTX 3090 gpu)

Changelog

  • 2023-07-19: Initial release

About bards.ai

At bards.ai, we focus on providing machine learning expertise and skills to our partners, particularly in the areas of nlp, machine vision and time series analysis. Our team is located in Wroclaw, Poland. Please visit our website for more information: bards.ai

Let us know if you use our model :). Also, if you need any help, feel free to contact us at [email protected]