mipo57's picture
Upload README.md with huggingface_hub
345d34e
|
raw
history blame
2.15 kB
metadata
language: pl
tags:
  - text-classification
  - financial-sentiment-analysis
  - sentiment-analysis
datasets:
  - datasets/financial_phrasebank
metrics:
  - f1
  - accuracy
  - precision
  - recall
widget:
  - text: Sprzedaż netto wzrosła o 30% do 36 mln EUR.
    example_title: Example 1
  - text: Rusza Black Friday. Lista promocji w sklepach.
    example_title: Example 2
  - text: >-
      Akcje CDPROJEKT zanotowały największy spadek wśród spółek notowanych na
      GPW.
    example_title: Example 3

Finance Sentiment PL (fast)

Finance Sentiment PL (fast) is a distiluse-based model for analyzing sentiment of Polish financial news. It was trained on the translated version of Financial PhraseBank by Malo et al. (20014) for 10 epochs on single RTX3090 gpu.

The model will give you a three labels: positive, negative and neutral.

How to use

You can use this model directly with a pipeline for sentiment-analysis:

from transformers import pipeline

nlp = pipeline("sentiment-analysis", model="bardsai/finance-sentiment-pl-fast")
nlp("Sprzedaż netto wzrosła o 30% do 36 mln EUR.")
[{'label': 'positive', 'score': 0.9999998807907104}]

Performance

Metric Value
f1 macro 0.933
precision macro 0.950
recall macro 0.918
accuracy 0.944
samples per second 268.1

(The performance was evaluated on RTX 3090 gpu)

Changelog

  • 2022-12-01: Rename the model to finance-sentiment-pl-base
  • 2022-11-15: Initial release

About bards.ai

At bards.ai, we focus on providing machine learning expertise and skills to our partners, particularly in the areas of nlp, machine vision and time series analysis. Our team is located in Wroclaw, Poland. Please visit our website for more information: bards.ai

Let us know if you use our model :). Also, if you need any help, feel free to contact us at [email protected]