metadata
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/wav2vec2-xls-r-300m
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: xls-r-300-cv17-bulgarian-adap-ru
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: bg
split: validation
args: bg
metrics:
- type: wer
value: 0.3184421100534719
name: Wer
xls-r-300-cv17-bulgarian-adap-ru
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3848
- Wer: 0.3184
- Cer: 0.0766
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
3.1611 | 0.6579 | 100 | 3.1566 | 1.0 | 1.0 |
1.4834 | 1.3158 | 200 | 1.5156 | 0.9683 | 0.3419 |
0.5874 | 1.9737 | 300 | 0.5361 | 0.6018 | 0.1459 |
0.312 | 2.6316 | 400 | 0.3991 | 0.4526 | 0.1071 |
0.2139 | 3.2895 | 500 | 0.3913 | 0.4365 | 0.1053 |
0.2653 | 3.9474 | 600 | 0.3756 | 0.4114 | 0.0997 |
0.186 | 4.6053 | 700 | 0.3684 | 0.4057 | 0.0971 |
0.1569 | 5.2632 | 800 | 0.3831 | 0.4182 | 0.0996 |
0.1635 | 5.9211 | 900 | 0.3577 | 0.3803 | 0.0914 |
0.0962 | 6.5789 | 1000 | 0.3461 | 0.3620 | 0.0868 |
0.2232 | 7.2368 | 1100 | 0.3705 | 0.3596 | 0.0856 |
0.1456 | 7.8947 | 1200 | 0.3722 | 0.3643 | 0.0880 |
0.0846 | 8.5526 | 1300 | 0.3657 | 0.3565 | 0.0839 |
0.0874 | 9.2105 | 1400 | 0.3836 | 0.3418 | 0.0814 |
0.1059 | 9.8684 | 1500 | 0.3634 | 0.3397 | 0.0808 |
0.0719 | 10.5263 | 1600 | 0.3741 | 0.3468 | 0.0838 |
0.0681 | 11.1842 | 1700 | 0.3757 | 0.3396 | 0.0817 |
0.0701 | 11.8421 | 1800 | 0.3892 | 0.3324 | 0.0804 |
0.043 | 12.5 | 1900 | 0.3892 | 0.3315 | 0.0797 |
0.0482 | 13.1579 | 2000 | 0.3905 | 0.3213 | 0.0768 |
0.0279 | 13.8158 | 2100 | 0.3826 | 0.3185 | 0.0761 |
0.0609 | 14.4737 | 2200 | 0.3848 | 0.3184 | 0.0766 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1