The official library of GGUF format models for use in the local AI chat app, Backyard AI.
Download Backyard AI here to get started.
Request Additional models at r/LLM_Quants.
NeuralBeagle14 7B
- Creator: [Maxime Labonne](https://huggingface.co/Maxime Labonne/)
- Original: NeuralBeagle14 7B
- Date Created: 2024-01-15
- Trained Context: 8192 tokens
- Description: DPO finetune of the author's earlier Beagle14-7B model. Compared to other 7B models, it displays good performance in instruction following and reasoning tasks. It can also be used for RP and storytelling.
What is a GGUF?
GGUF is a large language model (LLM) format that can be split between CPU and GPU. GGUFs are compatible with applications based on llama.cpp, such as Backyard AI. Where other model formats require higher end GPUs with ample VRAM, GGUFs can be efficiently run on a wider variety of hardware. GGUF models are quantized to reduce resource usage, with a tradeoff of reduced coherence at lower quantizations. Quantization reduces the precision of the model weights by changing the number of bits used for each weight.
Backyard AI
- Free, local AI chat application.
- One-click installation on Mac and PC.
- Automatically use GPU for maximum speed.
- Built-in model manager.
- High-quality character hub.
- Zero-config desktop-to-mobile tethering. Backyard AI makes it easy to start chatting with AI using your own characters or one of the many found in the built-in character hub. The model manager helps you find the latest and greatest models without worrying about whether it's the correct format. Backyard AI supports advanced features such as lorebooks, author's note, text formatting, custom context size, sampler settings, grammars, local TTS, cloud inference, and tethering, all implemented in a way that is straightforward and reliable. Join us on Discord
- Downloads last month
- 35
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.