moe-minicpm-x4-base
moe-minicpm-x4-base is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
- NurtureAI/minicpm-2b-sft-bf16-llamafied-16k
- NurtureAI/minicpm-2b-sft-bf16-llamafied-16k
- NurtureAI/minicpm-2b-sft-bf16-llamafied-16k
- NurtureAI/minicpm-2b-sft-bf16-llamafied-16k
🧩 Configuration
base_model: NurtureAI/minicpm-2b-sft-bf16-llamafied-16k
gate_mode: random
experts_per_token: 2
experts:
- source_model: NurtureAI/minicpm-2b-sft-bf16-llamafied-16k
positive_prompts: [""]
- source_model: NurtureAI/minicpm-2b-sft-bf16-llamafied-16k
positive_prompts: [""]
- source_model: NurtureAI/minicpm-2b-sft-bf16-llamafied-16k
positive_prompts: [""]
- source_model: NurtureAI/minicpm-2b-sft-bf16-llamafied-16k
positive_prompts: [""]
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "babybirdprd/moe-minicpm-x4-base"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 28
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for babybirdprd/moe-minicpm-x4-base
Base model
NurtureAI/minicpm-2b-sft-bf16-llamafied-16k