metadata
language:
- en
- zh
- de
- es
- ru
- ko
- fr
- ja
- pt
- tr
- pl
- ca
- nl
- ar
- sv
- it
- id
- hi
- fi
- vi
- he
- uk
- el
- ms
- cs
- ro
- da
- hu
- ta
- 'no'
- th
- ur
- hr
- bg
- lt
- la
- mi
- ml
- cy
- sk
- te
- fa
- lv
- bn
- sr
- az
- sl
- kn
- et
- mk
- br
- eu
- is
- hy
- ne
- mn
- bs
- kk
- sq
- sw
- gl
- mr
- pa
- si
- km
- sn
- yo
- so
- af
- oc
- ka
- be
- tg
- sd
- gu
- am
- yi
- lo
- uz
- fo
- ht
- ps
- tk
- nn
- mt
- sa
- lb
- my
- bo
- tl
- mg
- as
- tt
- haw
- ln
- ha
- ba
- jw
- su
tags:
- audio
- automatic-speech-recognition
license: mit
library_name: ctranslate2
note: install wheel from https://github.com/OpenNMT/CTranslate2/actions/runs/6801730648 for multilingual support
Whisper large-v3 model for CTranslate2
This repository contains the conversion of openai/whisper-large-v3 to the CTranslate2 model format.
This model can be used in CTranslate2 or projects based on CTranslate2 such as faster-whisper.
Example
from faster_whisper import WhisperModel
model = WhisperModel("large-v3")
segments, info = model.transcribe("audio.mp3")
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
Conversion details
The original model was converted with the following command:
ct2-transformers-converter --model openai/whisper-large-v3 --output_dir faster-whisper-large-v2 \
--copy_files tokenizer.json --quantization float16
Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the compute_type
option in CTranslate2.
More information
For more information about the original model, see its model card.