b07611031's picture
End of training
d6999b2 verified
|
raw
history blame
5.39 kB
metadata
license: apache-2.0
base_model: microsoft/cvt-13-384-22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: cvt-13-384-22k-finetuned-LeafBack
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.948051948051948

cvt-13-384-22k-finetuned-LeafBack

This model is a fine-tuned version of microsoft/cvt-13-384-22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1695
  • Accuracy: 0.9481

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 100
  • eval_batch_size: 50
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 7 0.6404 0.6623
No log 2.0 14 0.5304 0.7273
No log 3.0 21 0.4551 0.7922
No log 4.0 28 0.3175 0.8571
No log 5.0 35 0.2922 0.8701
No log 6.0 42 0.2964 0.8701
No log 7.0 49 0.2839 0.8701
No log 8.0 56 0.2930 0.8571
No log 9.0 63 0.2856 0.8831
No log 10.0 70 0.2969 0.8831
No log 11.0 77 0.3002 0.8701
No log 12.0 84 0.2919 0.8831
No log 13.0 91 0.2780 0.8961
No log 14.0 98 0.2733 0.8831
No log 15.0 105 0.2489 0.8961
No log 16.0 112 0.2569 0.8961
No log 17.0 119 0.2371 0.9091
No log 18.0 126 0.2367 0.9091
No log 19.0 133 0.2297 0.9091
No log 20.0 140 0.2170 0.9221
No log 21.0 147 0.2132 0.9351
No log 22.0 154 0.2080 0.9351
No log 23.0 161 0.2010 0.9481
No log 24.0 168 0.2106 0.9221
No log 25.0 175 0.2055 0.9351
No log 26.0 182 0.1982 0.9481
No log 27.0 189 0.2105 0.9351
No log 28.0 196 0.2204 0.9351
No log 29.0 203 0.2095 0.9351
No log 30.0 210 0.2107 0.9221
No log 31.0 217 0.1808 0.9221
No log 32.0 224 0.1711 0.9351
No log 33.0 231 0.1777 0.9351
No log 34.0 238 0.1700 0.9351
No log 35.0 245 0.1743 0.9221
No log 36.0 252 0.1877 0.9481
No log 37.0 259 0.1855 0.9481
No log 38.0 266 0.1792 0.9481
No log 39.0 273 0.1607 0.9481
No log 40.0 280 0.1681 0.9481
No log 41.0 287 0.1768 0.9481
No log 42.0 294 0.1909 0.9481
No log 43.0 301 0.1812 0.9481
No log 44.0 308 0.1822 0.9481
No log 45.0 315 0.1731 0.9481
No log 46.0 322 0.1846 0.9351
No log 47.0 329 0.1846 0.9481
No log 48.0 336 0.1915 0.9351
No log 49.0 343 0.1879 0.9351
No log 50.0 350 0.1860 0.9351
No log 51.0 357 0.1907 0.9351
No log 52.0 364 0.1729 0.9481
No log 53.0 371 0.1837 0.9351
No log 54.0 378 0.1793 0.9351
No log 55.0 385 0.1783 0.9481
No log 56.0 392 0.1844 0.9351
No log 57.0 399 0.1724 0.9351
No log 58.0 406 0.1819 0.9351
No log 59.0 413 0.1792 0.9351
No log 60.0 420 0.1695 0.9481

Framework versions

  • Transformers 4.38.1
  • Pytorch 1.10.0+cu111
  • Datasets 2.17.1
  • Tokenizers 0.15.2