license: apache-2.0 | |
tags: | |
- generated_from_trainer | |
metrics: | |
- accuracy | |
- f1 | |
model-index: | |
- name: geocoder_model | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# geocoder_model | |
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.2632 | |
- Accuracy: {'accuracy': 0.9005447386872337} | |
- F1: {'f1': 0.8323636363636362} | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 16 | |
- eval_batch_size: 16 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 2 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | | |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------:| | |
| 0.26 | 1.0 | 4636 | 0.2405 | {'accuracy': 0.8972547327544361} | {'f1': 0.827866630523177} | | |
| 0.2069 | 2.0 | 9272 | 0.2632 | {'accuracy': 0.9005447386872337} | {'f1': 0.8323636363636362} | | |
### Framework versions | |
- Transformers 4.25.1 | |
- Pytorch 1.13.0+cu116 | |
- Tokenizers 0.13.2 | |