Feature | Description |
---|---|
Name | en_pipeline |
Version | 0.0.0 |
spaCy | >=3.5.1,<3.6.0 |
Default Pipeline | tok2vec , tagger , parser , attribute_ruler , lemmatizer , ner , textcat_multilabel |
Components | tok2vec , tagger , parser , attribute_ruler , lemmatizer , ner , textcat_multilabel |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (114 labels for 4 components)
Component | Labels |
---|---|
tagger |
$ , '' , , , -LRB- , -RRB- , . , : , ADD , AFX , CC , CD , DT , EX , FW , HYPH , IN , JJ , JJR , JJS , LS , MD , NFP , NN , NNP , NNPS , NNS , PDT , POS , PRP , PRP$ , RB , RBR , RBS , RP , SYM , TO , UH , VB , VBD , VBG , VBN , VBP , VBZ , WDT , WP , WP$ , WRB , XX , _SP , ```` |
parser |
ROOT , acl , acomp , advcl , advmod , agent , amod , appos , attr , aux , auxpass , case , cc , ccomp , compound , conj , csubj , csubjpass , dative , dep , det , dobj , expl , intj , mark , meta , neg , nmod , npadvmod , nsubj , nsubjpass , nummod , oprd , parataxis , pcomp , pobj , poss , preconj , predet , prep , prt , punct , quantmod , relcl , xcomp |
ner |
CARDINAL , DATE , EVENT , FAC , GPE , LANGUAGE , LAW , LOC , MONEY , NORP , ORDINAL , ORG , PERCENT , PERSON , PRODUCT , QUANTITY , TIME , WORK_OF_ART |
textcat_multilabel |
Keep |
Accuracy
Type | Score |
---|---|
TAG_ACC |
0.00 |
DEP_UAS |
0.00 |
DEP_LAS |
0.00 |
DEP_LAS_PER_TYPE |
0.00 |
SENTS_P |
100.00 |
SENTS_R |
100.00 |
SENTS_F |
100.00 |
LEMMA_ACC |
0.00 |
ENTS_F |
0.00 |
ENTS_P |
0.00 |
ENTS_R |
0.00 |
ENTS_PER_TYPE |
0.00 |
CATS_SCORE |
91.25 |
CATS_MICRO_P |
93.94 |
CATS_MICRO_R |
97.89 |
CATS_MICRO_F |
95.88 |
CATS_MACRO_P |
93.94 |
CATS_MACRO_R |
97.89 |
CATS_MACRO_F |
95.88 |
CATS_MACRO_AUC |
91.25 |
TOK2VEC_LOSS |
0.00 |
TEXTCAT_MULTILABEL_LOSS |
15.98 |
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Evaluation results
- NER Precisionself-reported0.000
- NER Recallself-reported0.000
- NER F Scoreself-reported0.000
- TAG (XPOS) Accuracyself-reported0.000
- Lemma Accuracyself-reported0.000
- Unlabeled Attachment Score (UAS)self-reported0.000
- Labeled Attachment Score (LAS)self-reported0.000
- Sentences F-Scoreself-reported1.000