|
--- |
|
base_model: meta-llama/Meta-Llama-3.1-405B |
|
library_name: peft |
|
license: llama3.1 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: outputs/out/qlora-llama3_1-405b |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: meta-llama/Meta-Llama-3.1-405B |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_4bit: true |
|
strict: false |
|
|
|
datasets: |
|
- path: tatsu-lab/alpaca |
|
type: alpaca |
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.0 |
|
output_dir: ./outputs/out/qlora-llama3_1-405b |
|
|
|
wandb_project: qlora-fsdp-405b |
|
wandb_entity: oaaic |
|
|
|
adapter: qlora |
|
|
|
sequence_len: 2048 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
lora_r: 16 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 1 |
|
num_epochs: 4 |
|
optimizer: adamw_torch |
|
adam_beta1: 0.9 |
|
adam_beta2: 0.95 |
|
max_grad_norm: 0.1 |
|
lr_scheduler: cosine |
|
learning_rate: 0.00001 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
tf32: true |
|
|
|
gradient_checkpointing: true |
|
gradient_checkpointing_kwargs: |
|
use_reentrant: true |
|
logging_steps: 1 |
|
flash_attention: true |
|
|
|
warmup_steps: 50 |
|
evals_per_epoch: 1 |
|
saves_per_epoch: 1 |
|
weight_decay: 0.0 |
|
fsdp: |
|
- full_shard |
|
- auto_wrap |
|
fsdp_config: |
|
fsdp_limit_all_gathers: true |
|
fsdp_sync_module_states: true |
|
fsdp_offload_params: true |
|
fsdp_use_orig_params: false |
|
fsdp_cpu_ram_efficient_loading: true |
|
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP |
|
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer |
|
fsdp_state_dict_type: FULL_STATE_DICT |
|
fsdp_sharding_strategy: FULL_SHARD |
|
special_tokens: |
|
pad_token: <|finetune_right_pad_id|> |
|
|
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# outputs/out/qlora-llama3_1-405b |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-405B](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B) on the None dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.43.3 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |