layoutlmv3-finetuned-wildreceipt

This model is a fine-tuned version of microsoft/layoutlmv3-base on the wildreceipt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3068
  • Precision: 0.8738
  • Recall: 0.8809
  • F1: 0.8774
  • Accuracy: 0.9246

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.32 100 1.3498 0.6130 0.3126 0.4140 0.6742
No log 0.63 200 0.8939 0.6665 0.5317 0.5915 0.7815
No log 0.95 300 0.7159 0.7311 0.6425 0.6840 0.8161
No log 1.26 400 0.5901 0.7554 0.6690 0.7095 0.8405
1.0677 1.58 500 0.5263 0.7632 0.7232 0.7427 0.8578
1.0677 1.89 600 0.4759 0.7871 0.7777 0.7824 0.8774
1.0677 2.21 700 0.4299 0.8054 0.8070 0.8062 0.8890
1.0677 2.52 800 0.4165 0.8064 0.8311 0.8185 0.8937
1.0677 2.84 900 0.3845 0.8344 0.8300 0.8322 0.9005
0.4267 3.15 1000 0.3540 0.8433 0.8318 0.8375 0.9056
0.4267 3.47 1100 0.3429 0.8362 0.8540 0.8450 0.9086
0.4267 3.79 1200 0.3274 0.8451 0.8545 0.8498 0.9105
0.4267 4.1 1300 0.3433 0.8397 0.8535 0.8466 0.9092
0.4267 4.42 1400 0.3181 0.8514 0.8604 0.8559 0.9154
0.2869 4.73 1500 0.3191 0.8472 0.8637 0.8554 0.9129
0.2869 5.05 1600 0.3128 0.8613 0.8658 0.8635 0.9182
0.2869 5.36 1700 0.3121 0.8622 0.8695 0.8658 0.9182
0.2869 5.68 1800 0.3230 0.8473 0.8661 0.8566 0.9140
0.2869 5.99 1900 0.2986 0.8729 0.8633 0.8681 0.9209
0.2134 6.31 2000 0.3032 0.8555 0.8694 0.8624 0.9169
0.2134 6.62 2100 0.3056 0.8705 0.8710 0.8708 0.9220
0.2134 6.94 2200 0.3122 0.8630 0.8790 0.8709 0.9217
0.2134 7.26 2300 0.3047 0.8692 0.8778 0.8734 0.9215
0.2134 7.57 2400 0.3103 0.8701 0.8780 0.8741 0.9225
0.1661 7.89 2500 0.3080 0.8712 0.8787 0.8749 0.9226
0.1661 8.2 2600 0.3011 0.8653 0.8834 0.8743 0.9236
0.1661 8.52 2700 0.3034 0.8735 0.8798 0.8766 0.9247
0.1661 8.83 2800 0.3054 0.8698 0.8793 0.8745 0.9238
0.1661 9.15 2900 0.3105 0.8697 0.8812 0.8754 0.9237
0.1415 9.46 3000 0.3068 0.8738 0.8809 0.8774 0.9246
0.1415 9.78 3100 0.3086 0.8730 0.8793 0.8761 0.9229
0.1415 10.09 3200 0.3013 0.8755 0.8830 0.8792 0.9256
0.1415 10.41 3300 0.3107 0.8692 0.8815 0.8753 0.9241
0.1415 10.73 3400 0.3073 0.8759 0.8794 0.8777 0.9261
0.1239 11.04 3500 0.3109 0.8727 0.8819 0.8773 0.9253
0.1239 11.36 3600 0.3124 0.8723 0.8790 0.8756 0.9243
0.1239 11.67 3700 0.3171 0.8724 0.8805 0.8764 0.9241
0.1239 11.99 3800 0.3081 0.8739 0.8804 0.8771 0.9254
0.1239 12.3 3900 0.3095 0.8735 0.8798 0.8766 0.9254
0.1106 12.62 4000 0.3094 0.8740 0.8796 0.8768 0.9254

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.0
  • Datasets 2.14.3
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for avurity/layoutlmv3-finetuned-wildreceipt

Finetuned
(223)
this model

Evaluation results