protBERTbfd_AAV2_regressor
This model is a fine-tuned version of Rostlab/prot_bert_bfd on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0327
- Mse: 0.0327
- Rmse: 0.1808
- Mae: 0.0618
- R2: 0.8691
- Smape: 101.2324
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 4096
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Mse | Rmse | Mae | R2 | Smape |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 58 | 0.0985 | 0.0985 | 0.3138 | 0.1707 | 0.6057 | 102.5806 |
No log | 2.0 | 116 | 0.0689 | 0.0689 | 0.2625 | 0.1432 | 0.7242 | 112.9846 |
No log | 3.0 | 174 | 0.0400 | 0.0400 | 0.1999 | 0.0859 | 0.8399 | 102.6132 |
No log | 4.0 | 232 | 0.0402 | 0.0402 | 0.2005 | 0.0745 | 0.8389 | 103.3228 |
No log | 5.0 | 290 | 0.0337 | 0.0337 | 0.1836 | 0.0665 | 0.8650 | 101.0925 |
No log | 6.0 | 348 | 0.0327 | 0.0327 | 0.1808 | 0.0618 | 0.8691 | 101.2324 |
Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.