WB Doc Topics
Collection
This is a collection of models trained on synthetically generated sentences conditional on WBG topics. The models are designed for ensembling.
•
22 items
•
Updated
This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0935 | 0.4931 | 1000 | 0.0894 | 0.9815 | 0.0 | 0.0 | 0.0 |
0.0764 | 0.9862 | 2000 | 0.0699 | 0.9815 | 0.0 | 0.0 | 0.0 |
0.0621 | 1.4793 | 3000 | 0.0567 | 0.9821 | 0.0732 | 0.8832 | 0.0382 |
0.0542 | 1.9724 | 4000 | 0.0495 | 0.9840 | 0.2881 | 0.8175 | 0.1749 |
0.0468 | 2.4655 | 5000 | 0.0465 | 0.9854 | 0.4302 | 0.7764 | 0.2975 |
0.0441 | 2.9586 | 6000 | 0.0433 | 0.9861 | 0.4928 | 0.7613 | 0.3643 |
0.0395 | 3.4517 | 7000 | 0.0415 | 0.9862 | 0.5333 | 0.7144 | 0.4254 |
0.0384 | 3.9448 | 8000 | 0.0397 | 0.9868 | 0.5643 | 0.7222 | 0.4631 |
0.0343 | 4.4379 | 9000 | 0.0389 | 0.9870 | 0.5808 | 0.7188 | 0.4873 |
0.0337 | 4.9310 | 10000 | 0.0376 | 0.9875 | 0.5954 | 0.7393 | 0.4985 |
0.0305 | 5.4241 | 11000 | 0.0371 | 0.9876 | 0.6006 | 0.7449 | 0.5032 |
0.0295 | 5.9172 | 12000 | 0.0375 | 0.9876 | 0.6106 | 0.7257 | 0.5270 |
0.0271 | 6.4103 | 13000 | 0.0371 | 0.9878 | 0.6096 | 0.7493 | 0.5138 |
0.0257 | 6.9034 | 14000 | 0.0373 | 0.9878 | 0.6171 | 0.7325 | 0.5332 |
0.0234 | 7.3964 | 15000 | 0.0373 | 0.9877 | 0.6277 | 0.7127 | 0.5609 |
0.0241 | 7.8895 | 16000 | 0.0378 | 0.9878 | 0.6242 | 0.7287 | 0.5459 |
Base model
microsoft/deberta-v3-small