WB Doc Topics
Collection
This is a collection of models trained on synthetically generated sentences conditional on WBG topics. The models are designed for ensembling.
•
22 items
•
Updated
This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0934 | 0.4929 | 1000 | 0.0904 | 0.9814 | 0.0 | 0.0 | 0.0 |
0.0778 | 0.9857 | 2000 | 0.0702 | 0.9814 | 0.0 | 0.0 | 0.0 |
0.0618 | 1.4786 | 3000 | 0.0567 | 0.9828 | 0.1751 | 0.8200 | 0.0980 |
0.0535 | 1.9714 | 4000 | 0.0492 | 0.9843 | 0.3358 | 0.7842 | 0.2136 |
0.0473 | 2.4643 | 5000 | 0.0455 | 0.9855 | 0.4668 | 0.7407 | 0.3408 |
0.0436 | 2.9571 | 6000 | 0.0426 | 0.9861 | 0.5016 | 0.7524 | 0.3763 |
0.0389 | 3.4500 | 7000 | 0.0407 | 0.9865 | 0.5337 | 0.7497 | 0.4143 |
0.0376 | 3.9428 | 8000 | 0.0399 | 0.9866 | 0.5634 | 0.7187 | 0.4633 |
0.0339 | 4.4357 | 9000 | 0.0389 | 0.9870 | 0.5653 | 0.7472 | 0.4547 |
0.0337 | 4.9285 | 10000 | 0.0385 | 0.9873 | 0.5815 | 0.7552 | 0.4728 |
0.0295 | 5.4214 | 11000 | 0.0377 | 0.9872 | 0.6024 | 0.7156 | 0.5202 |
0.0305 | 5.9142 | 12000 | 0.0383 | 0.9874 | 0.5992 | 0.7317 | 0.5074 |
0.0254 | 6.4071 | 13000 | 0.0375 | 0.9876 | 0.6141 | 0.7281 | 0.5310 |
0.0273 | 6.9000 | 14000 | 0.0379 | 0.9877 | 0.6163 | 0.7325 | 0.5319 |
0.0228 | 7.3928 | 15000 | 0.0379 | 0.9877 | 0.6165 | 0.7367 | 0.5300 |
0.0235 | 7.8857 | 16000 | 0.0379 | 0.9874 | 0.6298 | 0.6930 | 0.5773 |
0.0208 | 8.3785 | 17000 | 0.0379 | 0.9877 | 0.6341 | 0.7129 | 0.5710 |
0.0204 | 8.8714 | 18000 | 0.0381 | 0.9879 | 0.6381 | 0.7172 | 0.5747 |
Base model
microsoft/deberta-v3-small